<div class="csl-bib-body">
<div class="csl-entry">Thomele, D., Gheisi, A. R., Niedermaier, M., Elsässer, M. S., Bernardi, J., Grönbeck, H., & Diwald, O. (2018). Thin water films and particle morphology evolution in nanocrystalline MgO. <i>Journal of the American Ceramic Society</i>, <i>101</i>(11), 4994–5003. https://doi.org/10.1111/jace.15775</div>
</div>
-
dc.identifier.issn
0002-7820
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/145335
-
dc.description.abstract
A key question in the field of ceramics and catalysis is how and to what extent residual water in the reactive environment of a metal oxide particle powder affects particle coarsening and morphology. With X‐ray Diffraction (XRD) and Transmission Electron Microscopy (TEM), we investigated annealing‐induced morphology changes on powders of MgO nanocubes in different gaseous H2O environments. The use of such a model system for particle powders enabled us to describe how adsorbed water that originates from short exposure to air determines the evolution of MgO grain size, morphology, and microstructure. While cubic nanoparticles with a predominant abundance of (100) surface planes retain their shape after annealing to T = 1173 K under continuous pumping with a base pressure of water p(H2O) = 10−5 mbar, higher water partial pressures promote mass transport on the surfaces and across interfaces of such particle systems. This leads to substantial growth and intergrowth of particles and simultaneously favors the formation of step edges and shallow protrusions on terraces. The mass transfer is promoted by thin films of water providing a two‐dimensional solvent for Mg2+ ion hydration. In addition, we obtained direct evidence for hydroxylation‐induced stabilization of (110) faces and step edges of the grain surfaces.
en
dc.language.iso
en
-
dc.relation.ispartof
Journal of the American Ceramic Society
-
dc.subject
interfaces
en
dc.subject
grain growth
en
dc.subject
Ceramics and Composites
en
dc.subject
Materials Chemistry
en
dc.subject
magnesium oxide
en
dc.subject
coarsening
en
dc.title
Thin water films and particle morphology evolution in nanocrystalline MgO
en
dc.type
Artikel
de
dc.type
Article
en
dc.description.startpage
4994
-
dc.description.endpage
5003
-
dc.type.category
Original Research Article
-
tuw.container.volume
101
-
tuw.container.issue
11
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
wb.publication.intCoWork
International Co-publication
-
tuw.researchTopic.id
M1
-
tuw.researchTopic.id
M2
-
tuw.researchTopic.id
M8
-
tuw.researchTopic.name
Surfaces and Interfaces
-
tuw.researchTopic.name
Materials Characterization
-
tuw.researchTopic.name
Structure-Property Relationship
-
tuw.researchTopic.value
30
-
tuw.researchTopic.value
30
-
tuw.researchTopic.value
40
-
dcterms.isPartOf.title
Journal of the American Ceramic Society
-
tuw.publication.orgunit
E057-02 - Fachbereich Universitäre Serviceeinrichtung für Transmissions- Elektronenmikroskopie
-
tuw.publisher.doi
10.1111/jace.15775
-
dc.date.onlinefirst
2018-05-19
-
dc.identifier.eissn
1551-2916
-
dc.description.numberOfPages
10
-
tuw.author.orcid
0000-0002-0737-5513
-
tuw.author.orcid
0000-0002-4626-9246
-
tuw.author.orcid
0000-0002-8709-2889
-
tuw.author.orcid
0000-0002-2425-5281
-
wb.sci
true
-
wb.sciencebranch
Physik, Astronomie
-
wb.sciencebranch
Chemie
-
wb.sciencebranch.oefos
1030
-
wb.sciencebranch.oefos
1040
-
item.grantfulltext
none
-
item.fulltext
no Fulltext
-
item.languageiso639-1
en
-
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
item.openairetype
research article
-
item.cerifentitytype
Publications
-
crisitem.author.dept
E057-02 - Fachbereich Universitäre Serviceeinrichtung für Transmissions- Elektronenmikroskopie