<div class="csl-bib-body">
<div class="csl-entry">Veliov, V., & Vuong, P. T. (2018). Gradient Methods on Strongly Convex Feasible Sets and Optimal Control of Affine Systems. <i>Applied Mathematics and Optimization</i>, <i>81</i>(3), 1021–1054. https://doi.org/10.1007/s00245-018-9528-3</div>
</div>
-
dc.identifier.issn
0095-4616
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/145387
-
dc.description.abstract
The paper presents new results about convergence of the gradient projection and the conditional gradient methods for abstract minimization problems on strongly convex sets. In particular, linear convergence is proved, although the objective functional does not need to be convex. Such problems arise, in particular, when a recently developed discretization technique is applied to optimal control problems which are affine with respect to the control. This discretization technique has the advantage to provide higher accuracy of discretization (compared with the known discretization schemes) and involves strongly convex constraints and possibly non-convex objective functional. The applicability of the abstract results is proved in the case of linear-quadratic affine optimal control problems, and error estimates are obtained. A numerical example is given, confirming the theoretical findings.
en
dc.language.iso
en
-
dc.relation.ispartof
Applied Mathematics and Optimization
-
dc.subject
Applied Mathematics
-
dc.subject
optimal control
-
dc.subject
numerical methods
-
dc.subject
Control and Optimization
-
dc.subject
mathematical programming
-
dc.subject
affine control systems
-
dc.subject
bang-bang control
-
dc.subject
gradient meth- ods
-
dc.title
Gradient Methods on Strongly Convex Feasible Sets and Optimal Control of Affine Systems
en
dc.type
Artikel
de
dc.type
Article
en
dc.description.startpage
1021
-
dc.description.endpage
1054
-
dc.type.category
Original Research Article
-
tuw.container.volume
81
-
tuw.container.issue
3
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
tuw.researchTopic.id
A3
-
tuw.researchTopic.id
C6
-
tuw.researchTopic.name
Fundamental Mathematics Research
-
tuw.researchTopic.name
Modelling and Simulation
-
tuw.researchTopic.value
40
-
tuw.researchTopic.value
60
-
dcterms.isPartOf.title
Applied Mathematics and Optimization
-
tuw.publication.orgunit
E105-04 - Forschungsbereich Variationsrechnung, Dynamische Systeme und Operations Research
-
tuw.publisher.doi
10.1007/s00245-018-9528-3
-
dc.identifier.eissn
1432-0606
-
dc.description.numberOfPages
34
-
wb.sci
true
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1010
-
wb.facultyfocus
Wirtschaftsmathematik und Stochastik
de
wb.facultyfocus
Mathematical Methods in Economics and Stochastics
en
wb.facultyfocus.faculty
E100
-
item.languageiso639-1
en
-
item.cerifentitytype
Publications
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_18cf
-
item.openairecristype
http://purl.org/coar/resource_type/c_18cf
-
item.fulltext
no Fulltext
-
item.grantfulltext
restricted
-
item.openairetype
Artikel
-
item.openairetype
Article
-
crisitem.author.dept
E105-04 - Forschungsbereich Operations Research und Kontrollsysteme
-
crisitem.author.parentorg
E105 - Institut für Stochastik und Wirtschaftsmathematik