<div class="csl-bib-body">
<div class="csl-entry">Schöbinger, M., Schöberl, J., & Hollaus, K. (2018). An Error Estimator for Multiscale FEM for the Eddy-Current Problem in Laminated Materials. <i>IEEE Transactions on Magnetics</i>, <i>54</i>(3), Article 7203204. https://doi.org/10.1109/tmag.2017.2762357</div>
</div>
-
dc.identifier.issn
0018-9464
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/145819
-
dc.description.abstract
This paper develops an error estimator for a known multiscale method, which is used to solve the eddy-current problem using the time-harmonic single component current vector potential in 2-D. The multiscale method allows for the solution of the problem in a laminated domain without needing to resolve each laminate in the mesh, which would require a prohibitively large number of degrees of freedom in the finite-element system. The error estimator is based on a flux equilibration technique, which has so far been presented for a more restricted class of problems and has the advantage of being efficient as well as reliable with a generic constant equal to 1. It can be shown to be extendable to the equations arising in the used multiscale method. Its local nature allows for the construction of an efficient adaptive mesh refinement. Using these findings, the multiscale method can be improved to obtain a better rate of convergence with respect to the number of degrees of freedom.
en
dc.language.iso
en
-
dc.publisher
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
-
dc.relation.ispartof
IEEE Transactions on Magnetics
-
dc.subject
Electrical and Electronic Engineering
-
dc.subject
Electronic, Optical and Magnetic Materials
-
dc.title
An Error Estimator for Multiscale FEM for the Eddy-Current Problem in Laminated Materials
en
dc.type
Artikel
de
dc.type
Article
en
dc.type.category
Original Research Article
-
tuw.container.volume
54
-
tuw.container.issue
3
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
tuw.researchTopic.id
X1
-
tuw.researchTopic.id
C4
-
tuw.researchTopic.name
außerhalb der gesamtuniversitären Forschungsschwerpunkte
-
tuw.researchTopic.name
Mathematical and Algorithmic Foundations
-
tuw.researchTopic.value
10
-
tuw.researchTopic.value
90
-
dcterms.isPartOf.title
IEEE Transactions on Magnetics
-
tuw.publication.orgunit
E101-03 - Forschungsbereich Scientific Computing and Modelling
-
tuw.publisher.doi
10.1109/tmag.2017.2762357
-
dc.identifier.articleid
7203204
-
dc.identifier.eissn
1941-0069
-
dc.description.numberOfPages
4
-
tuw.author.orcid
0000-0002-0395-629X
-
wb.sci
true
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch
Elektrotechnik, Elektronik, Informationstechnik
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.oefos
2020
-
wb.facultyfocus
Analysis und Scientific Computing
de
wb.facultyfocus
Analysis and Scientific Computing
en
wb.facultyfocus.faculty
E100
-
item.languageiso639-1
en
-
item.openairetype
research article
-
item.grantfulltext
none
-
item.fulltext
no Fulltext
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
crisitem.author.dept
E101-03 - Forschungsbereich Scientific Computing and Modelling
-
crisitem.author.dept
E101-03 - Forschungsbereich Scientific Computing and Modelling
-
crisitem.author.dept
E101-03 - Forschungsbereich Scientific Computing and Modelling
-
crisitem.author.orcid
0000-0002-1250-5087
-
crisitem.author.orcid
0000-0002-0395-629X
-
crisitem.author.parentorg
E101 - Institut für Analysis und Scientific Computing
-
crisitem.author.parentorg
E101 - Institut für Analysis und Scientific Computing
-
crisitem.author.parentorg
E101 - Institut für Analysis und Scientific Computing