<div class="csl-bib-body">
<div class="csl-entry">Ahmadi, S., Roccon, A., Zonta, F., & Soldati, A. (2018). Turbulent drag reduction in channel flow with viscosity stratified fluids. <i>Computers and Fluids</i>, <i>176</i>, 260–265. https://doi.org/10.1016/j.compfluid.2016.11.007</div>
</div>
-
dc.identifier.issn
0045-7930
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/146029
-
dc.description.abstract
In this work we use Direct Numerical Simulation (DNS) to study the turbulent Poiseuille flow of two immiscible liquid layers inside a rectangular channel. A thin liquid layer (fluid 1) flows on top of a thick liquid layer (fluid 2), such that their thickness ratio is . The two liquid layers have the same density but different viscosities (viscosity-stratified fluids). In particular, we consider three different values of the viscosity ratio : and . Numerical Simulations are based on a Phase Field method to describe the interaction between the two liquid layers. Although a small viscosity ratio is assumed, this physical setup aims at mimicking the situation where water (less viscous fluid) is used to favour the transport of oil (large viscous fluid) inside pipelines. Compared with the case of a single phase flow, the presence of a liquid-liquid interface produces a remarkable turbulence modulation inside the channel, since a significant proportion of the kinetic energy is subtracted from the mean flow and converted into work to deform the interface. This induces a strong turbulence reduction in the proximity of the interface and causes a substantial increase of the volume-flowrate. These effects become more pronounced with decreasing λ.
en
dc.language.iso
en
-
dc.publisher
Elsevier
-
dc.relation.ispartof
Computers and Fluids
-
dc.subject
General Computer Science
en
dc.subject
General Engineering
en
dc.title
Turbulent drag reduction in channel flow with viscosity stratified fluids
en
dc.type
Artikel
de
dc.type
Article
en
dc.contributor.affiliation
TU Wien, Austria
-
dc.description.startpage
260
-
dc.description.endpage
265
-
dc.type.category
Original Research Article
-
tuw.container.volume
176
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
tuw.researchTopic.id
C2
-
tuw.researchTopic.name
Computational Fluid Dynamics
-
tuw.researchTopic.value
100
-
dcterms.isPartOf.title
Computers and Fluids
-
tuw.publication.orgunit
E322-01 - Forschungsbereich Strömungsmechanik
-
tuw.publisher.doi
10.1016/j.compfluid.2016.11.007
-
dc.date.onlinefirst
2018-11-25
-
dc.identifier.eissn
1879-0747
-
dc.description.numberOfPages
6
-
wb.sci
true
-
wb.sciencebranch
Physik, Astronomie
-
wb.sciencebranch
Maschinenbau
-
wb.sciencebranch.oefos
1030
-
wb.sciencebranch.oefos
2030
-
wb.facultyfocus
Energie und Umwelttechnik
de
wb.facultyfocus
Energy and Environmental Technology
en
wb.facultyfocus.faculty
E300
-
item.fulltext
no Fulltext
-
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
item.languageiso639-1
en
-
item.cerifentitytype
Publications
-
item.openairetype
research article
-
item.grantfulltext
none
-
crisitem.author.dept
TU Wien
-
crisitem.author.dept
E322-01 - Forschungsbereich Strömungsmechanik
-
crisitem.author.dept
E322-01 - Forschungsbereich Strömungsmechanik
-
crisitem.author.dept
E322 - Institut für Strömungsmechanik und Wärmeübertragung
-
crisitem.author.parentorg
E322 - Institut für Strömungsmechanik und Wärmeübertragung
-
crisitem.author.parentorg
E322 - Institut für Strömungsmechanik und Wärmeübertragung
-
crisitem.author.parentorg
E300 - Fakultät für Maschinenwesen und Betriebswissenschaften