<div class="csl-bib-body">
<div class="csl-entry">Müller, D., Knoll, C., Ruh, T., Artner, W., Welch, J. M., Peterlik, H., Eitenberger, E., Friedbacher, G., Harasek, M., Blaha, P., Hradil, K., Werner, A., & Weinberger, P. (2018). Thermochemical Energy Storage: Calcium Doping Facilitates Water Dissociation in Magnesium Oxide (Adv. Sustainable Syst. 1/2018). <i>Advanced Sustainable Systems</i>, <i>2</i>(1), 1870004. https://doi.org/10.1002/adsu.201870004</div>
</div>
-
dc.identifier.issn
2366-7486
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/146099
-
dc.description.abstract
Aiming for highly reactive and reversible thermochemical energy storage materials based on magnesium hydroxide, the impact of Ca2+ as dopant in magnesium hydroxide/oxide is investigated in article number 1700096 by Danny Müller and co‐workers. Calcium doped magnesium oxide reveals notably increased water dissociation rates, compared to pure MgO, enhancing both rate and reaction completeness of the hydration. For a series of mixed magnesium‐calcium oxides (Mgx Ca1−x O) with varying Ca‐contents between 0 and 40% the material of a composition Mg0.9Ca0.1O shows the fastest rehydration, transforming completely within 80 minutes to the mixed hydroxide. In consecutive dehydration/rehydration cycles reasonable cycle stability is found. A "regeneration" of the aged material (reactivity reduced by excessive cycling) in liquid water re‐establishes the initial rehydration reactivity. Density functional theory (DFT) calculations support the experimental findings, confirming that calcium doping can reduce the energy of the rate limiting water dissociation reaction exploiting both electronic and steric (size) effects.
en
dc.language.iso
en
-
dc.publisher
Wiley
-
dc.relation.ispartof
Advanced Sustainable Systems
-
dc.subject
General Environmental Science
en
dc.subject
thermochemical energy storage
en
dc.subject
Renewable Energy, Sustainability and the Environment
en
dc.subject
magnesium oxide
en
dc.subject
calcium doping
en
dc.subject
water dissociation
en
dc.title
Thermochemical Energy Storage: Calcium Doping Facilitates Water Dissociation in Magnesium Oxide (Adv. Sustainable Syst. 1/2018)
en
dc.type
Artikel
de
dc.type
Article
en
dc.contributor.affiliation
University of Vienna, Austria
-
dc.description.startpage
1870004
-
dc.type.category
Original Research Article
-
tuw.container.volume
2
-
tuw.container.issue
1
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
tuw.researchTopic.id
M2
-
tuw.researchTopic.id
M8
-
tuw.researchTopic.id
X1
-
tuw.researchTopic.name
Materials Characterization
-
tuw.researchTopic.name
Structure-Property Relationship
-
tuw.researchTopic.name
außerhalb der gesamtuniversitären Forschungsschwerpunkte
-
tuw.researchTopic.value
20
-
tuw.researchTopic.value
50
-
tuw.researchTopic.value
30
-
dcterms.isPartOf.title
Advanced Sustainable Systems
-
tuw.publication.orgunit
E141-05 - Forschungsbereich Radiation Physics
-
tuw.publication.orgunit
E165-03 - Forschungsbereich Theoretische Chemie
-
tuw.publication.orgunit
E164-01-2 - Forschungsgruppe Oberflächen-, Spurenanalytik und Chemometrie
-
tuw.publication.orgunit
E302-01-1 - Forschungsgruppe Thermodynamik und Wärmetechnik