<div class="csl-bib-body">
<div class="csl-entry">Wagner, A., & Scheiner, S. (2022, June 7). <i>A Micromechanics-Informed Beam Model of Growing Wood Structures</i> [Conference Presentation]. 8th European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS2022), Oslo, Norway, Norway. http://hdl.handle.net/20.500.12708/146114</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/146114
-
dc.description.abstract
Growing trees respond to mechanical disturbances, e.g. resulting from environmental
forces or gravity, by forming so-called reaction wood, i.e. compression wood in gym-
nosperms and tension wood in angiosperms. It enables the tree to control its posture
by reinforcing and reorienting the axes of stems and branches [1] – a key prerequisite for
reaching large heights. The movement is due to asymmetric cambial activity resulting in
excentric growth and varying growth strains. While the underlying biological mechanisms
of growth strain generation are not yet fully understood, various hypotheses correlating
the induced macroscopic movement with the difference in cell wall structure of reaction
and non-reaction wood have been proposed [2].
On that basis, a homogenization procedure was employed for upscaling of elastic proper-
ties and evaluating the macroscopic effect of growth strains implemented at the cell wall
level. To do so, Herv ́e-Zaoui’s n-layered cylindrical inclusion problem [3] was extended
for anisotropic constituents and utilized for modeling of the cell wall.
Applying geometrically non-linear beam mechanics to a growing branch inclined with
respect to the vector of gravity allows to simulate the reorientation process induced by
growth strains at the cell wall level, introduced via the aforementioned micromechanics
model. In combination with experimental data of the branch shape evolution found in
literature of specific species, growth-related parameters can be deduced, giving access to
new insights into the dynamics of wood growth.
en
dc.language.iso
en
-
dc.subject
Wood Structures
en
dc.subject
Beam Model
en
dc.title
A Micromechanics-Informed Beam Model of Growing Wood Structures
-
dc.type
Presentation
en
dc.type
Vortrag
de
dc.type.category
Conference Presentation
-
tuw.researchTopic.id
M6
-
tuw.researchTopic.id
C6
-
tuw.researchTopic.id
C1
-
tuw.researchTopic.name
Biological and Bioactive Materials
-
tuw.researchTopic.name
Modeling and Simulation
-
tuw.researchTopic.name
Computational Materials Science
-
tuw.researchTopic.value
30
-
tuw.researchTopic.value
40
-
tuw.researchTopic.value
30
-
tuw.publication.orgunit
E202-01 - Forschungsbereich Festigkeitslehre und Biomechanik
-
tuw.event.name
8th European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS2022)
-
tuw.event.startdate
05-06-2022
-
tuw.event.enddate
09-06-2022
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Oslo, Norway
-
tuw.event.country
NO
-
tuw.event.institution
ECCOMAS
-
tuw.event.presenter
Wagner, Antonia
-
wb.sciencebranch
Maschinenbau
-
wb.sciencebranch
Bauingenieurwesen
-
wb.sciencebranch
Andere Naturwissenschaften
-
wb.sciencebranch.oefos
2030
-
wb.sciencebranch.oefos
2011
-
wb.sciencebranch.oefos
1070
-
wb.sciencebranch.value
30
-
wb.sciencebranch.value
30
-
wb.sciencebranch.value
40
-
item.languageiso639-1
en
-
item.openairetype
conference paper not in proceedings
-
item.grantfulltext
none
-
item.fulltext
no Fulltext
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_18cp
-
crisitem.author.dept
E202-01 - Forschungsbereich Festigkeitslehre und Biomechanik
-
crisitem.author.dept
E202-01 - Forschungsbereich Festigkeitslehre und Biomechanik
-
crisitem.author.parentorg
E202 - Institut für Mechanik der Werkstoffe und Strukturen
-
crisitem.author.parentorg
E202 - Institut für Mechanik der Werkstoffe und Strukturen