<div class="csl-bib-body">
<div class="csl-entry">He, J., Bartocci, E., Ničković, D., Isakovic, H., & Grosu, R. (2022). DeepSTL. In <i>ICSE ’22: Proceedings of the 44th International Conference on Software Engineering</i> (pp. 610–622). Association for Computing Machinery. https://doi.org/10.1145/3510003.3510171</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/146158
-
dc.description.abstract
Formal methods provide very powerful tools and techniques for the design and analysis of complex systems. Their practical application remains however limited, due to the widely accepted belief that formal methods require extensive expertise and a steep learning curve. Writing correct formal specifications in form of logical formulas is still considered to be a difficult and error prone task. In this paper we propose DeepSTL, a tool and technique for the translation of informal requirements, given as free English sentences, into Signal Temporal Logic (STL), a formal specification language for cyber-physical systems, used both by academia and advanced research labs in industry. A major challenge to devise such a translator is the lack of publicly available informal requirements and formal specifications. We propose a two-step workflow to address this challenge. We first design a grammar-based generation technique of synthetic data, where each output is a random STL formula and its associated set of possible English translations. In the second step, we use a state-of-the-art transformer-based neural translation technique, to train an accurate attentional translator of English to STL. The experimental results show high translation quality for patterns of English requirements that have been well trained, making this workflow promising to be extended for processing more complex translation tasks.
en
dc.language.iso
en
-
dc.subject
Formal Specification
en
dc.subject
Machine Translation
en
dc.subject
Requirements Engineering
en
dc.subject
Signal Temporal Logic (STL)
en
dc.title
DeepSTL
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.relation.isbn
9781450392211
-
dc.description.startpage
610
-
dc.description.endpage
622
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
ICSE '22: Proceedings of the 44th International Conference on Software Engineering
-
tuw.container.volume
2022-May
-
tuw.peerreviewed
true
-
tuw.relation.publisher
Association for Computing Machinery
-
tuw.relation.publisherplace
New York, NY, United States
-
tuw.researchTopic.id
I2
-
tuw.researchTopic.name
Computer Engineering and Software-Intensive Systems
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E191-01 - Forschungsbereich Cyber-Physical Systems
-
tuw.publisher.doi
10.1145/3510003.3510171
-
dc.description.numberOfPages
13
-
tuw.author.orcid
0000-0002-8004-6601
-
tuw.event.name
ICSE '22: 44th International Conference on Software Engineering
en
dc.description.sponsorshipexternal
Horizon 2020
-
dc.description.sponsorshipexternal
FFG
-
dc.relation.grantnoexternal
grant agreement No 956123
-
dc.relation.grantnoexternal
grant agreement No 880811
-
tuw.event.startdate
22-05-2022
-
tuw.event.enddate
27-05-2022
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Pittsburgh, Pennsylvania
-
tuw.event.country
US
-
tuw.event.presenter
He, Jie
-
tuw.event.track
Multi Track
-
wb.sciencebranch
Informatik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.value
100
-
item.languageiso639-1
en
-
item.openairetype
conference paper
-
item.grantfulltext
restricted
-
item.fulltext
no Fulltext
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
crisitem.author.dept
E191-01 - Forschungsbereich Cyber-Physical Systems
-
crisitem.author.dept
E191-01 - Forschungsbereich Cyber-Physical Systems
-
crisitem.author.dept
E191-01 - Forschungsbereich Cyber-Physical Systems
-
crisitem.author.dept
E191-01 - Forschungsbereich Cyber-Physical Systems
-
crisitem.author.dept
E191-01 - Forschungsbereich Cyber-Physical Systems