<div class="csl-bib-body">
<div class="csl-entry">Laggner, F., Wolfrum, E., Cavedon, M., Fink, F., Bernert, M., Dunne, M., Schneider, P. A., Kappatou, A., Birkenmeier, G., Fischer, R., Willensdorfer, M., & Aumayr, F. (2017). Pedestal structure and inter-ELM evolution for different main ion species in ASDEX Upgrade. <i>Physics of Plasmas</i>, <i>24</i>(5), 056105. https://doi.org/10.1063/1.4977461</div>
</div>
-
dc.identifier.issn
1070-664X
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/146428
-
dc.description.abstract
In tokamak plasmas with different main ion species, a change in confinement occurs, known
as the isotope effect. Experiments comparing hydrogen (H), deuterium (D), and helium (4He)
plasmas have been performed to identify processes that define the pedestal structure and
evolution in between the crashes of edge localized modes (ELMs). The pedestal top electron
densities and temperatures have been matched to compare the pedestal shape and stability. In the
D and H discharges, the pedestal electron temperature profiles do not differ, whereas the density
profile in H has shallower gradients. Furthermore, the heat flux across the pedestal in H is
roughly a factor of two higher than in D. In 4He plasmas at similar stored energy, the pedestal top
electron density is roughly a factor of 1.5 larger than in the references owing to the larger
effective charge. The peeling-ballooning theory, which is independent of the main ion species
mass, can sufficiently describe the pedestal stability in the hydrogenic plasmas. The inter-ELM
pedestal evolution has the same sequence of recovery phases for all investigated species, giving
evidence that similar mechanisms are acting in the pedestals. This is further supported by a similar
evolution of the inter-ELM magnetic signature and the corresponding toroidal structure.
en
dc.language.iso
en
-
dc.publisher
AIP PUBLISHING
-
dc.relation.ispartof
Physics of Plasmas
-
dc.subject
Condensed Matter Physics
-
dc.title
Pedestal structure and inter-ELM evolution for different main ion species in ASDEX Upgrade
en
dc.type
Artikel
de
dc.type
Article
en
dc.description.startpage
056105
-
dc.type.category
Original Research Article
-
tuw.container.volume
24
-
tuw.container.issue
5
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
wb.publication.intCoWork
International Co-publication
-
tuw.researchTopic.id
M2
-
tuw.researchTopic.name
Materials Characterization
-
tuw.researchTopic.value
100
-
dcterms.isPartOf.title
Physics of Plasmas
-
tuw.publication.orgunit
E134-03 - Forschungsbereich Atomic and Plasma Physics
-
tuw.publisher.doi
10.1063/1.4977461
-
dc.identifier.eissn
1089-7674
-
dc.description.numberOfPages
8
-
tuw.author.orcid
0000-0002-9788-0934
-
wb.sci
true
-
wb.sciencebranch
Physik, Astronomie
-
wb.sciencebranch.oefos
1030
-
wb.facultyfocus
Physikalische Technologie
de
wb.facultyfocus
Physical Technology
en
wb.facultyfocus.faculty
E130
-
item.grantfulltext
none
-
item.openairetype
research article
-
item.fulltext
no Fulltext
-
item.languageiso639-1
en
-
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
item.cerifentitytype
Publications
-
crisitem.author.dept
E134 - Institut für Angewandte Physik
-
crisitem.author.dept
E134 - Institut für Angewandte Physik
-
crisitem.author.dept
University of Milano-Bicocca
-
crisitem.author.dept
Max Planck Institute for Plasma Physics, Germany
-
crisitem.author.dept
Max Planck Institute for Plasma Physics, Garching, Germany
-
crisitem.author.dept
Max Planck Institute for Plasma Physics, Garching, Germany
-
crisitem.author.dept
E134 - Institut für Angewandte Physik
-
crisitem.author.dept
E134-03 - Forschungsbereich Atomic and Plasma Physics