<div class="csl-bib-body">
<div class="csl-entry">Kürnsteiner, P., B. Wilms, M., Weisheit, A., Barriobero Vila, P., A. Jägle, E., & Raabe, D. (2017). Massive nanoprecipitation in an Fe-19Ni-xAl maraging steel triggered by the intrinsic heat treatment during laser metal deposition. <i>Acta Materialia</i>, <i>129</i>, 52–60. https://doi.org/10.1016/j.actamat.2017.02.069</div>
</div>
-
dc.identifier.issn
1359-6454
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/146432
-
dc.description.abstract
Due to the layer-by-layer build-up of additively manufactured parts, the deposited material experiences a cyclic re-heating in the form of a sequence of temperature pulses. In the current work, this "intrinsic heat treatment (IHT)" was exploited to induce the precipitation of NiAl nanoparticles in an Fe-19Ni-xAl (at%) model maraging steel, a system known for rapid clustering. We used Laser Metal Deposition (LMD) to synthesize compositionally graded specimens. This allowed for the efficient screening of effects associated with varying Al contents ranging from 0 to 25 at% and for identifying promising concentrations for further studies. Based on the existence of the desired martensitic matrix, an upper bound for the Al concentration of 15 at% was defined. Owing to the presence of NiAl precipitates as observed by Atom Probe Tomography (APT), a lower bound of 3-5 at% Al was established. Within this concentration window, increasing the Al concentration gave rise to an increase in hardness by 225 HV due to an exceptionally high number density of 1025 NiAl precipitates per m3, as measured by APT. This work demonstrates the possibility of exploiting the IHT of the LMD process for the production of samples that are precipitation strengthened during the additive manufacturing process without need for any further heat treatment.
en
dc.language.iso
en
-
dc.publisher
PERGAMON-ELSEVIER SCIENCE LTD
-
dc.relation.ispartof
Acta Materialia
-
dc.subject
Electronic, Optical and Magnetic Materials
-
dc.subject
Nanoparticles
-
dc.subject
Ceramics and Composites
-
dc.subject
Additive manufacturing
-
dc.subject
Atom Probe Tomography
-
dc.subject
Metals and Alloys
-
dc.subject
Polymers and Plastics
-
dc.subject
Precipitation strengthening
-
dc.subject
High-energy X-ray diffraction
-
dc.title
Massive nanoprecipitation in an Fe-19Ni-xAl maraging steel triggered by the intrinsic heat treatment during laser metal deposition
en
dc.type
Artikel
de
dc.type
Article
en
dc.description.startpage
52
-
dc.description.endpage
60
-
dc.type.category
Original Research Article
-
tuw.container.volume
129
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
tuw.researchTopic.id
M3
-
tuw.researchTopic.id
M2
-
tuw.researchTopic.name
Metallic Materials
-
tuw.researchTopic.name
Materials Characterization
-
tuw.researchTopic.value
50
-
tuw.researchTopic.value
50
-
dcterms.isPartOf.title
Acta Materialia
-
tuw.publication.orgunit
E308-03 - Forschungsbereich Werkstofftechnik
-
tuw.publisher.doi
10.1016/j.actamat.2017.02.069
-
dc.identifier.eissn
1873-2453
-
dc.description.numberOfPages
9
-
tuw.author.orcid
0000-0002-3351-3545
-
wb.sci
true
-
wb.sciencebranch
Werkstofftechnik
-
wb.sciencebranch
Metallurgie
-
wb.sciencebranch.oefos
2050
-
wb.sciencebranch.oefos
2111
-
wb.facultyfocus
Werkstoff- und Fertigungstechnologien
de
wb.facultyfocus
Material and Production Technology
en
wb.facultyfocus.faculty
E300
-
item.languageiso639-1
en
-
item.openairetype
research article
-
item.grantfulltext
none
-
item.fulltext
no Fulltext
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
crisitem.author.dept
E308 - Institut für Werkstoffwissenschaft und Werkstofftechnologie
-
crisitem.author.dept
Max-Planck-Institut für Nachhaltige Materialien
-
crisitem.author.parentorg
E300 - Fakultät für Maschinenwesen und Betriebswissenschaften