<div class="csl-bib-body">
<div class="csl-entry">Burstall, F., Hertrich-Jeromin, U., Pember, M., & Rossman, W. (2017). <i>Polynomial Conserved Quantities of Lie Applicable Surfaces</i>. arXiv. https://doi.org/10.48550/arXiv.1707.01713</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/147144
-
dc.description.abstract
Using the gauge theoretic approach for Lie applicable surfaces, we characterise certain subclasses of surfaces in terms of polynomial conserved quantities. These include isothermic and Guichard surfaces of conformal geometry and L-isothermic surfaces of Laguerre geometry. In this setting one can see that the well known transformations available for these surfaces are induced by the transformations of the underlying Lie applicable surfaces. We also consider linear Weingarten surfaces in this setting and develop a new Bäcklund-type transformation for these surfaces.
en
dc.language.iso
en
-
dc.subject
Differential Geometry
en
dc.title
Polynomial Conserved Quantities of Lie Applicable Surfaces
en
dc.type
Preprint
de
dc.type
Preprint
en
dc.identifier.arxiv
1707.01713
-
dc.contributor.affiliation
University of Bath, United Kingdom of Great Britain and Northern Ireland (the)
-
tuw.peerreviewed
false
-
tuw.publication.orgunit
E104-03 - Forschungsbereich Differentialgeometrie und geometrische Strukturen
-
tuw.publisher.doi
10.48550/arXiv.1707.01713
-
dc.description.numberOfPages
35
-
tuw.author.orcid
0000-0002-3599-0783
-
tuw.publisher.server
arXiv
-
dc.relation.ispreviousversionof
10.1007/s00229-018-1033-0
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1010
-
wb.facultyfocus
Diskrete Mathematik und Geometrie
de
wb.facultyfocus
Discrete Mathematics and Geometry
en
wb.facultyfocus.faculty
E100
-
item.languageiso639-1
en
-
item.grantfulltext
none
-
item.cerifentitytype
Publications
-
item.openairetype
preprint
-
item.openairecristype
http://purl.org/coar/resource_type/c_816b
-
item.fulltext
no Fulltext
-
crisitem.author.dept
University of Bath
-
crisitem.author.dept
E104-03 - Forschungsbereich Differentialgeometrie und geometrische Strukturen
-
crisitem.author.dept
E104-03 - Forschungsbereich Differentialgeometrie und geometrische Strukturen
-
crisitem.author.dept
Kobe University
-
crisitem.author.orcid
0000-0002-3599-0783
-
crisitem.author.orcid
0000-0001-6773-0399
-
crisitem.author.parentorg
E104 - Institut für Diskrete Mathematik und Geometrie
-
crisitem.author.parentorg
E104 - Institut für Diskrete Mathematik und Geometrie