<div class="csl-bib-body">
<div class="csl-entry">Bodirsky, M., Bradley-Williams, D., Pinsker, M., & Pongrácz, A. (2017). The Universal Homogeneous Binary Tree. <i>Journal of Logic and Computation</i>, <i>28</i>(1), 133–163. https://doi.org/10.1093/logcom/exx043</div>
</div>
-
dc.identifier.issn
0955-792X
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/147288
-
dc.description.abstract
A partial order is called semilinear iff the upper bounds of each element are linearly ordered and any two elements have a common upper bound. There exists, up to isomorphism, a unique countable existentially closed semilinear order, which we denote by S2. We study the reducts of S2, that is, the relational structures with the same domain as S2 all of whose relations are first-order definable in S2. Our main result is a classification of the model-complete cores of the reducts of S2. From this, we also obtain a classification of reducts up to first-order interdefinability, which is equivalent to a classification of all closed permutation groups that contain the automorphism group of S2
en
dc.language.iso
en
-
dc.publisher
OXFORD UNIV PRESS
-
dc.relation.ispartof
Journal of Logic and Computation
-
dc.subject
Software
-
dc.subject
Theoretical Computer Science
-
dc.subject
Hardware and Architecture
-
dc.subject
Logic
-
dc.subject
Arts and Humanities (miscellaneous)
-
dc.title
The Universal Homogeneous Binary Tree
-
dc.type
Artikel
de
dc.type
Article
en
dc.description.startpage
133
-
dc.description.endpage
163
-
dc.type.category
Original Research Article
-
tuw.container.volume
28
-
tuw.container.issue
1
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
wb.publication.intCoWork
International Co-publication
-
tuw.researchTopic.id
X1
-
tuw.researchTopic.name
außerhalb der gesamtuniversitären Forschungsschwerpunkte
-
tuw.researchTopic.value
100
-
dcterms.isPartOf.title
Journal of Logic and Computation
-
tuw.publication.orgunit
E104-01 - Forschungsbereich Algebra
-
tuw.publisher.doi
10.1093/logcom/exx043
-
dc.identifier.eissn
1465-363X
-
dc.description.numberOfPages
31
-
wb.sci
true
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1010
-
wb.facultyfocus
Diskrete Mathematik und Geometrie
de
wb.facultyfocus
Discrete Mathematics and Geometry
en
wb.facultyfocus.faculty
E100
-
item.languageiso639-1
en
-
item.openairetype
research article
-
item.grantfulltext
none
-
item.fulltext
no Fulltext
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
crisitem.author.dept
TU Dresden
-
crisitem.author.dept
E104-01 - Forschungsbereich Algebra
-
crisitem.author.parentorg
E104 - Institut für Diskrete Mathematik und Geometrie