<div class="csl-bib-body">
<div class="csl-entry">Coronel, C., Garn, H., Waser, M., Deistler, M., Benke, T., Dal-Bianco, P., Ransmayr, G., Seiler, S., Grossegger, D., & Schmidt, R. (2017). Quantitative EEG Markers of Entropy and Auto Mutual Information in Relation to MMSE Scores of Probable Alzheimer’s Disease Patients. <i>Entropy</i>, <i>19</i>(3), 1–14. https://doi.org/10.3390/e19030130</div>
</div>
-
dc.identifier.issn
1099-4300
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/147310
-
dc.description.abstract
Analysis of nonlinear quantitative EEG (qEEG) markers describing complexity of signal in relation to severity of Alzheimer's disease (AD) was the focal point of this study. In this study, 79 patients diagnosed with probable AD were recruited from the multi-centric Prospective Dementia Database Austria (PRODEM). EEG recordings were done with the subjects seated in an upright position in a resting state with their eyes closed. Models of linear regressions explaining disease severity, expressed in Mini Mental State Examination (MMSE) scores, were analyzed by the nonlinear qEEG markers of auto mutual information (AMI), Shannon entropy (ShE), Tsallis entropy (TsE), multiscale entropy (MsE), or spectral entropy (SpE), with age, duration of illness, and years of education as co-predictors. Linear regression models with AMI were significant for all electrode sites and clusters, where R2 is 0.46 at the electrode site C3, 0.43 at Cz, F3, and central region, and 0.42 at the left region. MsE also had significant models at C3 with R2>0.40 at scales τ=5 and τ=6. ShE and TsE also have significant models at T7 and F7 with R2>0.30. Reductions in complexity, calculated by AMI, SpE, and MsE, were observed as the MMSE score decreased.
en
dc.language.iso
en
-
dc.publisher
MDPI
-
dc.relation.ispartof
Entropy
-
dc.subject
General Physics and Astronomy
-
dc.title
Quantitative EEG Markers of Entropy and Auto Mutual Information in Relation to MMSE Scores of Probable Alzheimer's Disease Patients
-
dc.type
Artikel
de
dc.type
Article
en
dc.description.startpage
1
-
dc.description.endpage
14
-
dc.type.category
Original Research Article
-
tuw.container.volume
19
-
tuw.container.issue
3
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
tuw.researchTopic.id
X1
-
tuw.researchTopic.name
außerhalb der gesamtuniversitären Forschungsschwerpunkte
-
tuw.researchTopic.value
100
-
dcterms.isPartOf.title
Entropy
-
tuw.publication.orgunit
E105-02 - Forschungsbereich Ökonometrie und Systemtheorie
-
tuw.publisher.doi
10.3390/e19030130
-
dc.identifier.articleid
130
-
dc.identifier.eissn
1099-4300
-
dc.description.numberOfPages
14
-
wb.sci
true
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1010
-
wb.facultyfocus
Wirtschaftsmathematik und Stochastik
de
wb.facultyfocus
Mathematical Methods in Economics and Stochastics
en
wb.facultyfocus.faculty
E100
-
item.openairetype
research article
-
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
item.fulltext
no Fulltext
-
item.cerifentitytype
Publications
-
item.languageiso639-1
en
-
item.grantfulltext
none
-
crisitem.author.dept
TU Wien, Österreich
-
crisitem.author.dept
E389 - Telecommunications
-
crisitem.author.dept
E105 - Institut für Stochastik und Wirtschaftsmathematik
-
crisitem.author.dept
E105 - Institut für Stochastik und Wirtschaftsmathematik
-
crisitem.author.parentorg
E350 - Fakultät für Elektrotechnik und Informationstechnik