<div class="csl-bib-body">
<div class="csl-entry">Slijepcevic, D., Zeppelzauer, M., Gorgas, A.-M., Schwab, C., Schüller, M., Baca, A., Breiteneder, C., & Horsak, B. (2017). Automatic Classification of Functional Gait Disorders. <i>IEEE Journal of Biomedical and Health Informatics</i>, <i>22</i>(5), 1653–1661. https://doi.org/10.1109/jbhi.2017.2785682</div>
</div>
-
dc.identifier.issn
2168-2194
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/147823
-
dc.description.abstract
This article proposes a comprehensive investigation of the automatic classification of functional gait disorders based solely on ground reaction force (GRF) measurements. The aim of the study is twofold: (1) to investigate the suitability of stateof-the-art GRF parameterization techniques (representations) for the discrimination of functional gait disorders; and (2) to provide a first performance baseline for the automated classification of functional gait disorders for a large-scale dataset. The utilized database comprises GRF measurements from 279 patients with gait disorders (GDs) and data from 161 healthy controls (N). Patients were manually classified into four classes with different functional impairments associated with the "hip", "knee", "ankle", and "calcaneus". Different parameterizations are investigated: GRF parameters, global principal component analysis (PCA)-based representations and a combined representation applying PCA on GRF parameters. The discriminative power of each parameterization for different classes is investigated by linear discriminant analysis (LDA). Based on this analysis, two classification experiments are pursued: (1) distinction between healthy and impaired gait (N vs. GD) and (2) multi-class classification between healthy gait and all four GD classes. Experiments show promising results and reveal among others that several factors, such as imbalanced class cardinalities and varying numbers of measurement sessions per patient have a strong impact on the classification accuracy and therefore need to be taken into account. The results represent a promising first step towards the automated classification of gait disorders and a first performance baseline for future developments in this direction.
en
dc.language.iso
en
-
dc.publisher
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
-
dc.relation.ispartof
IEEE Journal of Biomedical and Health Informatics
-
dc.subject
Electrical and Electronic Engineering
-
dc.subject
Computer Science Applications
-
dc.subject
Machine Learning
-
dc.subject
Biotechnology
-
dc.subject
Health Information Management
-
dc.subject
Ground Reaction Force (GRF)
-
dc.subject
Gait Classification
-
dc.subject
Principal Component Analysis (PCA)
-
dc.subject
Gait Parameters
-
dc.title
Automatic Classification of Functional Gait Disorders
en
dc.type
Artikel
de
dc.type
Article
en
dc.description.startpage
1653
-
dc.description.endpage
1661
-
dc.type.category
Original Research Article
-
tuw.container.volume
22
-
tuw.container.issue
5
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
tuw.researchTopic.id
I5
-
tuw.researchTopic.name
Visual Computing and Human-Centered Technology
-
tuw.researchTopic.value
100
-
dcterms.isPartOf.title
IEEE Journal of Biomedical and Health Informatics
-
tuw.publication.orgunit
E193-02 - Forschungsbereich Computer Graphics
-
tuw.publication.orgunit
E193-06 - Forschungsbereich Interactive Media Systems
-
tuw.publisher.doi
10.1109/jbhi.2017.2785682
-
dc.identifier.eissn
2168-2208
-
dc.description.numberOfPages
9
-
tuw.author.orcid
0000-0002-2295-7466
-
tuw.author.orcid
0000-0003-0413-4746
-
tuw.author.orcid
0000-0002-1704-0290
-
tuw.author.orcid
0000-0002-9296-3212
-
wb.sci
true
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Gesundheitswissenschaften
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
3030
-
wb.facultyfocus
Visual Computing and Human-Centered Technology (VC + HCT)
de
wb.facultyfocus
Visual Computing and Human-Centered Technology (VC + HCT)
en
wb.facultyfocus.faculty
E180
-
item.languageiso639-1
en
-
item.openairetype
research article
-
item.grantfulltext
none
-
item.fulltext
no Fulltext
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
crisitem.author.dept
TU Wien
-
crisitem.author.dept
E193-07 - Forschungsbereich Visual Analytics
-
crisitem.author.dept
University of Vienna
-
crisitem.author.dept
E193-03 - Forschungsbereich Virtual and Augmented Reality
-
crisitem.author.orcid
0000-0003-0413-4746
-
crisitem.author.parentorg
E193 - Institut für Visual Computing and Human-Centered Technology
-
crisitem.author.parentorg
E193 - Institut für Visual Computing and Human-Centered Technology