<div class="csl-bib-body">
<div class="csl-entry">Iglseder, A., Immitzer, M., Dostálová, A., Kasper, A., Pfeifer, N., Bauerhansl, C., Schöttl, S., & Hollaus, M. (2023). The potential of combining satellite and airborne remote sensing data for habitat classification and monitoring in forest landscapes. <i>International Journal of Applied Earth Observation and Geoinformation</i>, <i>117</i>, Article 103131. https://doi.org/10.1016/j.jag.2022.103131</div>
</div>
-
dc.identifier.issn
1569-8432
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/148136
-
dc.description.abstract
Mapping and monitoring of habitats are requirements for protecting biodiversity. In this study, we investigated the benefit of combining airborne (laser scanning, image-based point clouds) and satellite-based (Sentinel 1 and 2) data for habitat classification. We used a two level random forest 10-fold leave-location-out cross-validation workflow to model Natura 2000 forest and grassland habitat types on a 10 m pixel scale at two study sites in Vienna, Austria. We showed that models using combined airborne and satellite-based remote sensing data perform significantly better for forests than airborne or satellite-based data alone. For frequently occurring classes, we reached class accuracies with F1-scores from 0.60 to 0.87. We identified clear difficulties of correctly assigning rare classes with model-based classification. Finally, we demonstrated the potential of the workflow to identify errors in reference data and point to the opportunities for integration in habitat mapping and monitoring.
en
dc.description.sponsorship
FFG - Österr. Forschungsförderungs- gesellschaft mbH
-
dc.description.sponsorship
FFG - Österr. Forschungsförderungs- gesellschaft mbH
-
dc.language.iso
en
-
dc.publisher
Elsevier
-
dc.relation.ispartof
International Journal of Applied Earth Observation and Geoinformation
-
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
-
dc.subject
Habitat Mapping
en
dc.subject
Natura 2000
en
dc.subject
Airborne Laser Scanning
en
dc.subject
Sentinel-1
en
dc.subject
Sentinel-2
en
dc.subject
Random Forest
en
dc.title
The potential of combining satellite and airborne remote sensing data for habitat classification and monitoring in forest landscapes
en
dc.type
Article
en
dc.type
Artikel
de
dc.rights.license
Creative Commons Namensnennung 4.0 International
de
dc.rights.license
Creative Commons Attribution 4.0 International
en
dc.contributor.affiliation
BOKU University, Austria
-
dc.contributor.affiliation
Municipal Department 22 – Environmental Protection in Vienna (MA22), Austria