<div class="csl-bib-body">
<div class="csl-entry">Leimer, K., Guerrero, P., Weiss, T., & Musialski, P. (2022). LayoutEnhancer: Generating Good Indoor Layouts from Imperfect Data. In <i>SIGGRAPH Asia 2022 Conference Papers</i> (pp. 1–8). https://doi.org/10.1145/3550469.3555425</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/148183
-
dc.description.abstract
We address the problem of indoor layout synthesis, which is a topic of continuing research interest in computer graphics. The newest works made significant progress using data-driven generative methods; however, these approaches rely on suitable datasets. In practice, desirable layout properties may not exist in a dataset, for instance, specific expert knowledge can be missing in the data. We propose a method that combines expert knowledge, for example, knowledge about ergonomics, with a data-driven generator based on the popular Transformer architecture. The knowledge is given as differentiable scalar functions, which can be used both as weights or as additional terms in the loss function. Using this knowledge, the synthesized layouts can be biased to exhibit desirable properties, even if these properties are not present in the dataset. Our approach can also alleviate problems of lack of data and imperfections in the data. Our work aims to improve generative machine learning for modeling and provide novel tools for designers and amateurs for the problem of interior layout creation.
en
dc.description.sponsorship
Fonds zur Förderung der wissenschaftlichen Forschung (FWF)
-
dc.language.iso
en
-
dc.subject
indoor layout synthesis
en
dc.subject
interior design
en
dc.subject
neural networks
en
dc.title
LayoutEnhancer: Generating Good Indoor Layouts from Imperfect Data
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.contributor.affiliation
Adobe Research, UK
-
dc.contributor.affiliation
New Jersey Institute of Technology, United States of America (the)
-
dc.contributor.affiliation
New Jersey Institute of Technology, United States of America (the)
-
dc.relation.isbn
9781450394703
-
dc.relation.doi
10.1145/3550469
-
dc.description.startpage
1
-
dc.description.endpage
8
-
dc.relation.grantno
P 29981-N35
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
SIGGRAPH Asia 2022 Conference Papers
-
tuw.publication.invited
invited
-
tuw.project.title
Diskrete Flächen mit vorgeschriebener mittlerer Krümmung
-
tuw.researchTopic.id
C4
-
tuw.researchTopic.id
C6
-
tuw.researchTopic.name
Mathematical and Algorithmic Foundations
-
tuw.researchTopic.name
Modeling and Simulation
-
tuw.researchTopic.value
80
-
tuw.researchTopic.value
20
-
tuw.publication.orgunit
E104-04 - Forschungsbereich Angewandte Geometrie
-
tuw.publisher.doi
10.1145/3550469.3555425
-
dc.description.numberOfPages
8
-
tuw.author.orcid
0000-0002-7568-2849
-
tuw.author.orcid
0000-0001-6429-8190
-
tuw.event.name
SA '22: SIGGRAPH Asia 2022
en
tuw.event.startdate
06-12-2022
-
tuw.event.enddate
09-12-2022
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Daegu
-
tuw.event.country
KR
-
tuw.event.presenter
Leimer, Kurt
-
tuw.event.presenter
Musialski, Przemyslaw
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
5
-
wb.sciencebranch.value
95
-
item.grantfulltext
none
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.openairetype
conference paper
-
item.languageiso639-1
en
-
item.cerifentitytype
Publications
-
item.fulltext
no Fulltext
-
crisitem.author.dept
E104-04 - Forschungsbereich Angewandte Geometrie
-
crisitem.author.dept
E186 - Institut für Computergraphik und Algorithmen
-
crisitem.author.dept
New Jersey Institute of Technology
-
crisitem.author.dept
E104-04 - Forschungsbereich Angewandte Geometrie
-
crisitem.author.orcid
0000-0001-6429-8190
-
crisitem.author.parentorg
E104 - Institut für Diskrete Mathematik und Geometrie
-
crisitem.author.parentorg
E180 - Fakultät für Informatik
-
crisitem.author.parentorg
E104 - Institut für Diskrete Mathematik und Geometrie
-
crisitem.project.funder
FWF Fonds zur Förderung der wissenschaftlichen Forschung (FWF)