<div class="csl-bib-body">
<div class="csl-entry">Feischl, M., Gantner, G., Haberl, A., Praetorius, D., & Führer, T. (2016). Adaptive boundary element methods for optimal convergence of point errors. <i>Numerische Mathematik</i>, <i>132</i>(3), 541–567. https://doi.org/10.1007/s00211-015-0727-4</div>
</div>
-
dc.identifier.issn
0029-599X
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/148214
-
dc.description.abstract
One particular strength of the boundary element method is that it allows for a high-order
pointwise approximation of the solution of the related partial differential equation via the
representation formula. However, the high-order convergence and hence accuracy
usually suffers from singularities of the Cauchy data. We propose two adaptive
mesh-refining algorithms and prove their quasi-optimal convergence behavior with
respect to the point error in the representation formula. Numerical examples for the
weakly-singular integral equations for the 2D and 3D Laplacian underline our theoretical
findings.
en
dc.language.iso
en
-
dc.publisher
SPRINGER HEIDELBERG
-
dc.relation.ispartof
Numerische Mathematik
-
dc.subject
Applied Mathematics
-
dc.subject
Computational Mathematics
-
dc.subject
adaptive boundary element method
-
dc.subject
optimal convergence rates
-
dc.subject
point error
-
dc.subject
goal-oriented algorithm.
-
dc.title
Adaptive boundary element methods for optimal convergence of point errors
en
dc.type
Artikel
de
dc.type
Article
en
dc.description.startpage
541
-
dc.description.endpage
567
-
dc.type.category
Original Research Article
-
tuw.container.volume
132
-
tuw.container.issue
3
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
tuw.researchTopic.id
C4
-
tuw.researchTopic.name
Mathematical and Algorithmic Foundations
-
tuw.researchTopic.value
100
-
dcterms.isPartOf.title
Numerische Mathematik
-
tuw.publication.orgunit
E101-02 - Forschungsbereich Numerik
-
tuw.publisher.doi
10.1007/s00211-015-0727-4
-
dc.identifier.eissn
0945-3245
-
dc.description.numberOfPages
27
-
wb.sci
true
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1010
-
wb.facultyfocus
Analysis und Scientific Computing
de
wb.facultyfocus
Analysis and Scientific Computing
en
wb.facultyfocus.faculty
E100
-
item.grantfulltext
none
-
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
item.openairetype
research article
-
item.languageiso639-1
en
-
item.cerifentitytype
Publications
-
item.fulltext
no Fulltext
-
crisitem.author.dept
E101-02-3 - Forschungsgruppe Computational PDEs
-
crisitem.author.dept
E101-02-2 - Forschungsgruppe Numerik von PDEs
-
crisitem.author.dept
E101-02 - Forschungsbereich Numerik
-
crisitem.author.dept
E101 - Institut für Analysis und Scientific Computing
-
crisitem.author.dept
E101 - Institut für Analysis und Scientific Computing
-
crisitem.author.orcid
0000-0002-1977-9830
-
crisitem.author.parentorg
E101-02 - Forschungsbereich Numerik
-
crisitem.author.parentorg
E101-02 - Forschungsbereich Numerik
-
crisitem.author.parentorg
E101 - Institut für Analysis und Scientific Computing