<div class="csl-bib-body">
<div class="csl-entry">Li, P., Li, H., Chen, Y., Fleischner, H., & Lai, H.-J. (2016). Supereulerian graphs with width s and s-collapsible graphs. <i>Discrete Applied Mathematics</i>, <i>200</i>, 79–94. https://doi.org/10.1016/j.dam.2015.07.013</div>
</div>
-
dc.identifier.issn
0166-218X
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/149077
-
dc.description.abstract
For an integer s>0s>0 and for u,v∈V(G)u,v∈V(G) with u≠vu≠v, an (s;u,v)(s;u,v)-trail-system of GG is a subgraph HH consisting of ss edge-disjoint (u,v)(u,v)-trails. A graph is supereulerian with widthss if for any u,v∈V(G)u,v∈V(G) with u≠vu≠v, GG has a spanning (s;u,v)(s;u,v)-trail-system. The supereulerian widthμ′(G)μ′(G) of a graph GG is the largest integer ss such that GG is supereulerian with width kk for every integer kk with 0≤k≤s0≤k≤s. Thus a graph GG with μ′(G)≥2μ′(G)≥2 has a spanning Eulerian subgraph. Catlin (1988) introduced collapsible graphs to study graphs with spanning Eulerian subgraphs, and showed that every collapsible graph GG satisfies μ′(G)≥2μ′(G)≥2 (Catlin, 1988; Lai et al., 2009). Graphs GG with μ′(G)≥2μ′(G)≥2 have also been investigated by Luo et al. (2006) as Eulerian-connected graphs. In this paper, we extend collapsible graphs to ss-collapsible graphs and develop a new related reduction method to study μ′(G)μ′(G) for a graph GG. In particular, we prove that K3,3K3,3 is the smallest 3-edge-connected graph with μ′<3μ′<3. These results and the reduction method will be applied to determine a best possible degree condition for graphs with supereulerian width at least 3, which extends former results in Catlin (1988) and Lai (1988).
en
dc.language.iso
en
-
dc.publisher
ELSEVIER
-
dc.relation.ispartof
Discrete Applied Mathematics
-
dc.subject
Applied Mathematics
-
dc.subject
Discrete Mathematics and Combinatorics
-
dc.title
Supereulerian graphs with width s and s-collapsible graphs
en
dc.type
Artikel
de
dc.type
Article
en
dc.description.startpage
79
-
dc.description.endpage
94
-
dc.type.category
Original Research Article
-
tuw.container.volume
200
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
wb.publication.intCoWork
International Co-publication
-
tuw.researchTopic.id
I1
-
tuw.researchTopic.name
Logic and Computation
-
tuw.researchTopic.value
100
-
dcterms.isPartOf.title
Discrete Applied Mathematics
-
tuw.publication.orgunit
E192-01 - Forschungsbereich Algorithms and Complexity
-
tuw.publisher.doi
10.1016/j.dam.2015.07.013
-
dc.identifier.eissn
1872-6771
-
dc.description.numberOfPages
16
-
wb.sci
true
-
wb.sciencebranch
Informatik
-
wb.sciencebranch.oefos
1020
-
item.grantfulltext
restricted
-
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
item.openairetype
research article
-
item.languageiso639-1
en
-
item.cerifentitytype
Publications
-
item.fulltext
no Fulltext
-
crisitem.author.dept
Technical University of Munich
-
crisitem.author.dept
E192-01 - Forschungsbereich Algorithms and Complexity