<div class="csl-bib-body">
<div class="csl-entry">Reiter, M., Rota, P., Kleber, F., Diem, M., Groenefeld-Krentz, S., & Dworzak, M. (2016). Clustering of cell populations in flow cytometry data using a combination of Gaussian mixtures. <i>Pattern Recognition</i>, <i>60</i>, 1029–1040. https://doi.org/10.1016/j.patcog.2016.04.004</div>
</div>
-
dc.identifier.issn
0031-3203
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/149475
-
dc.description.abstract
We propose a supervised learning approach to automatic quantification of cell populations in flow cytometric samples. One sample contains up to millions of measurement vectors with a dimensionality between 10 and 20. Normally, each measurement vector corresponds to a single cell in the biological sample. Identifying biologically meaningful cell populations is essentially a clustering problem, however, standard clustering methods are impractical, because size, shape and location of corresponding clusters may vary strongly between samples mainly due to phenotypic differences and inter-laboratory variations. In our holistic approach, we implicitly employ the structural information (such as relative locations and shape of sub-populations). A new input sample is reconstructed by a linear combination of artificial reference samples each represented by a Gaussian Mixture Model (GMM), in which for each Gaussian component the class label of the corresponding cluster of observations is known. The reference samples are calculated from a larger set of training samples by non-negative matrix factorization and can be regarded as the basis of a lower dimensional feature space, in which input samples are reconstructed. We show a method for calculating the feature space transformation based on minimization the L2 distance defined between two GMM. The feature space representation of the sample is then used to assign each observation to one of the specified sub-populations by a Bayes decision. We present classification results on a database of about 170 patients with Acute Lymphoblastic Leukemia (ALL), where high accuracy in the prediction of relatively small leukemic populations is crucial. The approach is not limited to our application. It can be employed wherever analysis of large, multi-dimensional, numerical data of a specific class of samples with related structure has to be performed.
en
dc.language.iso
en
-
dc.relation.ispartof
Pattern Recognition
-
dc.subject
Gaussian mixture model
en
dc.subject
Convex non-negative matrix factorization
en
dc.subject
L2 distance
en
dc.subject
Clustering
en
dc.subject
Flow cytometry
en
dc.subject
Acute lymphblastic leukemia
en
dc.title
Clustering of cell populations in flow cytometry data using a combination of Gaussian mixtures
en
dc.type
Artikel
de
dc.type
Article
en
dc.description.startpage
1029
-
dc.description.endpage
1040
-
dc.type.category
Original Research Article
-
tuw.container.volume
60
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
wb.publication.intCoWork
International Co-publication
-
tuw.researchTopic.id
I5
-
tuw.researchTopic.name
Visual Computing and Human-Centered Technology
-
tuw.researchTopic.value
100
-
dcterms.isPartOf.title
Pattern Recognition
-
tuw.publication.orgunit
E193-01 - Forschungsbereich Computer Vision
-
tuw.publisher.doi
10.1016/j.patcog.2016.04.004
-
dc.date.onlinefirst
2016-09-02
-
dc.identifier.eissn
1873-5142
-
dc.description.numberOfPages
12
-
tuw.author.orcid
0000-0002-8004-6839
-
tuw.author.orcid
0000-0001-8351-5066
-
wb.sci
true
-
wb.sciencebranch
Informatik
-
wb.sciencebranch.oefos
1020
-
wb.facultyfocus
Visual Computing and Human-Centered Technology (VC + HCT)
de
wb.facultyfocus
Visual Computing and Human-Centered Technology (VC + HCT)
en
wb.facultyfocus.faculty
E180
-
item.languageiso639-1
en
-
item.openairetype
research article
-
item.grantfulltext
none
-
item.fulltext
no Fulltext
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
crisitem.author.dept
E193-01 - Forschungsbereich Computer Vision
-
crisitem.author.dept
E183 - Institut für Rechnergestützte Automation
-
crisitem.author.dept
E193-01 - Forschungsbereich Computer Vision
-
crisitem.author.dept
E193-01 - Forschungsbereich Computer Vision
-
crisitem.author.orcid
0000-0002-8004-6839
-
crisitem.author.orcid
0000-0001-8351-5066
-
crisitem.author.orcid
0000-0002-5048-5128
-
crisitem.author.parentorg
E193 - Institut für Visual Computing and Human-Centered Technology
-
crisitem.author.parentorg
E180 - Fakultät für Informatik
-
crisitem.author.parentorg
E193 - Institut für Visual Computing and Human-Centered Technology
-
crisitem.author.parentorg
E193 - Institut für Visual Computing and Human-Centered Technology