<div class="csl-bib-body">
<div class="csl-entry">Torres-Perez, V., & Wu, L. (2017). Strong Chang’s Conjecture, Semi-Stationary Reflection, the Strong Tree Property and two-cardinal square principles. <i>Fundamenta Mathematicae</i>, <i>236</i>(3), 247–262. https://doi.org/10.4064/fm257-5-2016</div>
</div>
-
dc.identifier.issn
0016-2736
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/149694
-
dc.description.abstract
We prove that a strong version of Chang's Conjecture implies both the Strong Tree Property for and the negation of the square principle for every regular cardinal
en
dc.language.iso
en
-
dc.relation.ispartof
Fundamenta Mathematicae
-
dc.subject
Algebra and Number Theory
en
dc.title
Strong Chang's Conjecture, Semi-Stationary Reflection, the Strong Tree Property and two-cardinal square principles
en
dc.type
Artikel
de
dc.type
Article
en
dc.description.startpage
247
-
dc.description.endpage
262
-
dc.type.category
Original Research Article
-
tuw.container.volume
236
-
tuw.container.issue
3
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
wb.publication.intCoWork
International Co-publication
-
tuw.researchTopic.id
X1
-
tuw.researchTopic.name
außerhalb der gesamtuniversitären Forschungsschwerpunkte
-
tuw.researchTopic.value
100
-
dcterms.isPartOf.title
Fundamenta Mathematicae
-
tuw.publication.orgunit
E104 - Institut für Diskrete Mathematik und Geometrie
-
tuw.publisher.doi
10.4064/fm257-5-2016
-
dc.date.onlinefirst
2016-12-02
-
dc.identifier.eissn
1730-6329
-
dc.description.numberOfPages
16
-
wb.sci
true
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1010
-
wb.facultyfocus
Diskrete Mathematik und Geometrie
de
wb.facultyfocus
Discrete Mathematics and Geometry
en
wb.facultyfocus.faculty
E100
-
item.cerifentitytype
Publications
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_18cf
-
item.openairecristype
http://purl.org/coar/resource_type/c_18cf
-
item.fulltext
no Fulltext
-
item.grantfulltext
none
-
item.languageiso639-1
en
-
item.openairetype
Artikel
-
item.openairetype
Article
-
crisitem.author.dept
E104-01 - Forschungsbereich Algebra
-
crisitem.author.parentorg
E104 - Institut für Diskrete Mathematik und Geometrie