<div class="csl-bib-body">
<div class="csl-entry">Schöberl, J., & Lederer, P. L. (2016). <i>Polynomial robust stability analysis for H(div)-conforming finite elements for the Stokes equations</i>. arXiv. https://doi.org/10.48550/arXiv.1612.01482</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/149780
-
dc.description.abstract
In this work we consider a discontinuous Galerkin method for the discretization of the Stokes problem. We use H(div)-conforming finite elements as they provide major benefits such as exact mass conservation and pressure-independent error estimates. The main aspect of this work lies in the analysis of high order approximations. We show that the considered method is uniformly stable with respect to the polynomial order k and provides optimal error estimates ∥u−uh∥1h+∥ΠQhp−ph∥≤c(h/k)s∥u∥s+1. To derive those estimates, we prove a k-robust LBB condition. This proof is based on a polynomial H2-stable extension operator. This extension operator itself is of interest for the numerical analysis of C0-continuous discontinuous Galerkin methods for 4th order problems.
en
dc.language.iso
en
-
dc.subject
Numerical Analysis
en
dc.title
Polynomial robust stability analysis for H(div)-conforming finite elements for the Stokes equations
-
dc.type
Preprint
de
dc.type
Preprint
en
dc.identifier.arxiv
1612.01482
-
tuw.peerreviewed
false
-
tuw.publication.orgunit
E101-03 - Forschungsbereich Scientific Computing and Modelling
-
tuw.publisher.doi
10.48550/arXiv.1612.01482
-
dc.description.numberOfPages
26
-
tuw.publisher.server
arXiv
-
dc.relation.ispreviousversionof
10.1093/imanum/drx051
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch
Sonstige Technische Wissenschaften
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.oefos
2119
-
wb.facultyfocus
Analysis und Scientific Computing
de
wb.facultyfocus
Analysis and Scientific Computing
en
wb.facultyfocus.faculty
E100
-
item.languageiso639-1
en
-
item.grantfulltext
none
-
item.cerifentitytype
Publications
-
item.openairetype
preprint
-
item.openairecristype
http://purl.org/coar/resource_type/c_816b
-
item.fulltext
no Fulltext
-
crisitem.author.dept
E101-03 - Forschungsbereich Scientific Computing and Modelling
-
crisitem.author.dept
E101-03-1 - Forschungsgruppe Computational Mathematics in Engineering
-
crisitem.author.orcid
0000-0002-1250-5087
-
crisitem.author.parentorg
E101 - Institut für Analysis und Scientific Computing
-
crisitem.author.parentorg
E101-03 - Forschungsbereich Scientific Computing and Modelling