<div class="csl-bib-body">
<div class="csl-entry">Lederer, P. L., Linke, A., Merdon, C., & Schöberl, J. (2016). <i>Divergence-free Reconstruction Operators for Pressure-Robust Stokes Discretizations With Continuous Pressure Finite Elements</i>. arXiv. https://doi.org/10.48550/arXiv.1609.03701</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/149813
-
dc.description.abstract
Classical inf-sup stable mixed finite elements for the incompressible (Navier-)Stokes equations are not pressure-robust, i.e., their velocity errors depend on the continuous pressure. However, a modification only in the right hand side of a Stokes discretization is able to reestablish pressure-robustness, as shown recently for several inf-sup stable Stokes elements with discontinuous discrete pressures. In this contribution, this idea is extended to low and high order Taylor-Hood and mini elements, which have continuous discrete pressures. For the modification of the right hand side a velocity reconstruction operator is constructed that maps discretely divergence-free test functions to exactly divergence-free ones. The reconstruction is based on local H(div)-conforming flux equilibration on vertex patches, and fulfills certain orthogonality properties to provide consistency and optimal a-priori error estimates. Numerical examples for the incompressible Stokes and Navier-Stokes equations confirm that the new pressure-robust Taylor-Hood and mini elements converge with optimal order and outperform significantly the classical versions of those elements when the continuous pressure is comparably large.
en
dc.language.iso
en
-
dc.subject
incompressible Navier--Stokes equations
en
dc.subject
mixed finite elements
en
dc.subject
pressure-robustness
en
dc.subject
exact divergence-free velocity reconstruction
en
dc.subject
flux equilibration
en
dc.title
Divergence-free Reconstruction Operators for Pressure-Robust Stokes Discretizations With Continuous Pressure Finite Elements
en
dc.type
Preprint
de
dc.type
Preprint
en
dc.identifier.arxiv
1609.03701
-
tuw.peerreviewed
false
-
tuw.publication.orgunit
E101-03 - Forschungsbereich Scientific Computing and Modelling
-
tuw.publisher.doi
10.48550/arXiv.1609.03701
-
dc.description.numberOfPages
23
-
tuw.publisher.server
arXiv
-
dc.relation.ispreviousversionof
10.1137/16M1089964
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch
Sonstige Technische Wissenschaften
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.oefos
2119
-
wb.facultyfocus
Analysis und Scientific Computing
de
wb.facultyfocus
Analysis and Scientific Computing
en
wb.facultyfocus.faculty
E100
-
item.fulltext
no Fulltext
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_816b
-
item.languageiso639-1
en
-
item.openairetype
preprint
-
item.grantfulltext
none
-
crisitem.author.dept
E101-03-1 - Forschungsgruppe Computational Mathematics in Engineering
-
crisitem.author.dept
E101-03 - Forschungsbereich Scientific Computing and Modelling
-
crisitem.author.parentorg
E101-03 - Forschungsbereich Scientific Computing and Modelling
-
crisitem.author.parentorg
E101 - Institut für Analysis und Scientific Computing