<div class="csl-bib-body">
<div class="csl-entry">Gemsa, A., Nöllenburg, M., & Rutter, I. (2016). Consistent labeling of rotating maps. <i>Journal of Computational Geometry</i>, <i>7</i>(1), 308–331. https://doi.org/10.20382/jocg.v7i1a15</div>
</div>
-
dc.identifier.issn
0218-1959
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/149851
-
dc.description.abstract
Dynamic maps that allow continuous map rotations, for example, on mobile devices, encounter new geometric labeling issues unseen in static maps before. We study the following dynamic map labeling problem: The input is an abstract map consisting of a set P of points in the plane with attached horizontally aligned rectangular labels. While the map with the point set P is rotated, all labels remain horizontally aligned. We are interested in a consistent labeling of P under rotation, i.e., an assignment of a single (possibly empty) active interval of angles for each label that determines its visibility under rotations such that visible labels neither intersect each other (soft conflicts) nor occlude points in P at any rotation angle (hard conflicts). Our goal is to find a consistent labeling that maximizes the number of visible labels integrated over all rotation angles.
We first introduce a general model for labeling rotating maps and derive basic geo- metric properties of consistent solutions. We show NP-hardness of the above optimization problem even for unit-square labels. We then present a constant-factor approximation for this problem based on line stabbing, and refine it further into an efficient polynomial-time approximation scheme (EPTAS).
en
dc.language.iso
en
-
dc.relation.ispartof
Journal of Computational Geometry
-
dc.subject
Dynamic map
en
dc.subject
efficient polynomial-time approximation scheme
en
dc.title
Consistent labeling of rotating maps
en
dc.type
Artikel
de
dc.type
Article
en
dc.contributor.affiliation
Karlsruhe Institute of Technology, Germany
-
dc.contributor.affiliation
Karlsruhe Institute of Technology, Germany
-
dc.contributor.affiliation
Karlsruhe Institute of Technology, Germany
-
dc.description.startpage
308
-
dc.description.endpage
331
-
dc.type.category
Original Research Article
-
tuw.container.volume
7
-
tuw.container.issue
1
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
wb.publication.intCoWork
International Co-publication
-
tuw.researchTopic.id
I1
-
tuw.researchTopic.name
Logic and Computation
-
tuw.researchTopic.value
100
-
dcterms.isPartOf.title
Journal of Computational Geometry
-
tuw.publication.orgunit
E192-01 - Forschungsbereich Algorithms and Complexity
-
tuw.publisher.doi
10.20382/jocg.v7i1a15
-
dc.identifier.eissn
1793-6357
-
dc.description.numberOfPages
24
-
wb.sciencebranch
Informatik
-
wb.sciencebranch.oefos
1020
-
item.fulltext
no Fulltext
-
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
item.grantfulltext
none
-
item.cerifentitytype
Publications
-
item.languageiso639-1
en
-
item.openairetype
research article
-
crisitem.author.dept
Karlsruhe Institute of Technology
-
crisitem.author.dept
E192-01 - Forschungsbereich Algorithms and Complexity