<div class="csl-bib-body">
<div class="csl-entry">Goldstern, M., & Saharon, S. (2016). All creatures great and small. <i>Transactions of the American Mathematical Society</i>, <i>368</i>(11), 7551–7577. https://doi.org/10.1090/tran/6568</div>
</div>
-
dc.identifier.issn
0002-9947
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/149887
-
dc.description.abstract
Let $ \lambda $ be an uncountable regular cardinal. Assuming $ 2^\lambda =\lambda ^+$, we show that the clone lattice on a set of size $ \lambda $ is not dually atomic.
en
dc.relation.ispartof
Transactions of the American Mathematical Society
-
dc.subject
Applied Mathematics
-
dc.subject
General Mathematics
-
dc.subject
Precomplete clones
-
dc.subject
maximal clones
-
dc.subject
clones on infinite sets
-
dc.subject
creature forcing
-
dc.subject
large creatures
-
dc.subject
cardinal arithmetic
-
dc.title
All creatures great and small
-
dc.type
Artikel
de
dc.type
Article
en
dc.description.startpage
7551
-
dc.description.endpage
7577
-
dc.type.category
Original Research Article
-
tuw.container.volume
368
-
tuw.container.issue
11
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
tuw.researchTopic.id
X1
-
tuw.researchTopic.name
außerhalb der gesamtuniversitären Forschungsschwerpunkte
-
tuw.researchTopic.value
100
-
dcterms.isPartOf.title
Transactions of the American Mathematical Society
-
tuw.publication.orgunit
E104-01 - Forschungsbereich Algebra
-
tuw.publisher.doi
10.1090/tran/6568
-
dc.identifier.eissn
1088-6850
-
dc.description.numberOfPages
27
-
wb.sci
true
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1010
-
wb.facultyfocus
Diskrete Mathematik und Geometrie
de
wb.facultyfocus
Discrete Mathematics and Geometry
en
wb.facultyfocus.faculty
E100
-
item.openairetype
research article
-
item.grantfulltext
none
-
item.fulltext
no Fulltext
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
crisitem.author.dept
E104-08 - Forschungsbereich Mengenlehre
-
crisitem.author.orcid
0000-0002-0438-633X
-
crisitem.author.parentorg
E104 - Institut für Diskrete Mathematik und Geometrie