<div class="csl-bib-body">
<div class="csl-entry">Amidei, J., Pianigiani, D., & San Mauro, L. F. (2016). Trial and error mathematics II: Dialectical sets and quasidialectical sets, their degrees, and their distribution within the class of limit sets. <i>The Review of Symbolic Logic</i>, <i>9</i>(4), 810–835. https://doi.org/10.1017/s1755020316000253</div>
</div>
-
dc.identifier.issn
1755-0203
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/149923
-
dc.description.abstract
This paper is a continuation of Amidei, Pianigiani, San Mauro, Simi, & Sorbi (2016), where we have introduced the quasidialectical systems, which are abstract deductive systems designed to provide, in line with Lakatos' views, a formalization of trial and error mathematics more adherent to the real mathematical practice of revision than Magari's original dialectical systems. In this paper we prove that the two models of deductive systems (dialectical systems and quasidialectical systems) have in some sense the same information content, in that they represent two classes of sets (the dialectical sets and the quasidialectical sets, respectively), which have the same Turing degrees (namely, the computably enumerable Turing degrees), and the same enumeration degrees (namely, the ${\rm{\Pi }}_1^0$ enumeration degrees). Nonetheless, dialectical sets and quasidialectical sets do not coincide. Even restricting our attention to the so-called loopless quasidialectical sets, we show that the quasidialectical sets properly extend the dialectical sets. As both classes consist of ${\rm{\Delta }}_2^0$ sets, the extent to which the two classes differ is conveniently measured using the Ershov hierarchy: indeed, the dialectical sets are ω -computably enumerable (close inspection also shows that there are dialectical sets which do not lie in any finite level; and in every finite level n ≥ 2 of the Ershov hierarchy there is a dialectical set which does not lie in the previous level); on the other hand, the quasidialectical sets spread out throughout all classes of the hierarchy (close inspection shows that for every ordinal notation a of a nonzero computable ordinal, there is a quasidialectical set lying in ${\rm{\Sigma }}_a^{ - 1}$ , but in none of the preceding levels).
en
dc.language.iso
en
-
dc.relation.ispartof
The Review of Symbolic Logic
-
dc.subject
Philosophy
en
dc.subject
Logic
en
dc.subject
Mathematics (miscellaneous)
en
dc.title
Trial and error mathematics II: Dialectical sets and quasidialectical sets, their degrees, and their distribution within the class of limit sets
en
dc.type
Artikel
de
dc.type
Article
en
dc.description.startpage
810
-
dc.description.endpage
835
-
dc.type.category
Original Research Article
-
tuw.container.volume
9
-
tuw.container.issue
4
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
wb.publication.intCoWork
International Co-publication
-
tuw.researchTopic.id
X1
-
tuw.researchTopic.name
außerhalb der gesamtuniversitären Forschungsschwerpunkte
-
tuw.researchTopic.value
100
-
dcterms.isPartOf.title
The Review of Symbolic Logic
-
tuw.publication.orgunit
E104-02 - Forschungsbereich Computational Logic
-
tuw.publisher.doi
10.1017/s1755020316000253
-
dc.date.onlinefirst
2016-10-17
-
dc.identifier.eissn
1755-0211
-
dc.description.numberOfPages
26
-
wb.sci
true
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1010
-
wb.facultyfocus
Diskrete Mathematik und Geometrie
de
wb.facultyfocus
Discrete Mathematics and Geometry
en
wb.facultyfocus.faculty
E100
-
item.languageiso639-1
en
-
item.openairetype
research article
-
item.grantfulltext
none
-
item.fulltext
no Fulltext
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
crisitem.author.dept
The Open University
-
crisitem.author.dept
E104-02 - Forschungsbereich Computational Logic
-
crisitem.author.parentorg
E104 - Institut für Diskrete Mathematik und Geometrie