<div class="csl-bib-body">
<div class="csl-entry">Horsten, L., & Leigh, G. (2017). Truth is Simple. <i>Mind</i>, <i>126</i>(501), 195–232. https://doi.org/10.1093/mind/fzv184</div>
</div>
-
dc.identifier.issn
0026-4423
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/149943
-
dc.description.abstract
Even though disquotationalism is not correct as it is usually formulated, a deep insight lies behind it. Specifically, it can be argued that, modulo implicit commitment to reflection principles, all there is to the notion of truth is given by a simple, natural collection of truth-biconditionals.
en
dc.language.iso
en
-
dc.relation.ispartof
Mind
-
dc.subject
Philosophy
en
dc.title
Truth is Simple
en
dc.type
Artikel
de
dc.type
Article
en
dc.description.startpage
195
-
dc.description.endpage
232
-
dc.type.category
Original Research Article
-
tuw.container.volume
126
-
tuw.container.issue
501
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
wb.publication.intCoWork
International Co-publication
-
tuw.researchTopic.id
X1
-
tuw.researchTopic.name
außerhalb der gesamtuniversitären Forschungsschwerpunkte
-
tuw.researchTopic.value
100
-
dcterms.isPartOf.title
Mind
-
tuw.publication.orgunit
E104-02 - Forschungsbereich Computational Logic
-
tuw.publisher.doi
10.1093/mind/fzv184
-
dc.date.onlinefirst
2016-11-08
-
dc.identifier.eissn
1460-2113
-
dc.description.numberOfPages
38
-
wb.sci
true
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1010
-
wb.facultyfocus
Diskrete Mathematik und Geometrie
de
wb.facultyfocus
Discrete Mathematics and Geometry
en
wb.facultyfocus.faculty
E100
-
item.languageiso639-1
en
-
item.openairetype
research article
-
item.grantfulltext
none
-
item.fulltext
no Fulltext
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
crisitem.author.dept
E104 - Institut für Diskrete Mathematik und Geometrie