<div class="csl-bib-body">
<div class="csl-entry">Angerer, A., Astner, T., Wirtitsch, D., Sumiya, H., Onoda, S., Isoya, J., Putz, S., & Majer, J. (2016). Collective strong coupling with homogeneous Rabi frequencies using a 3D lumped element microwave resonator. <i>Applied Physics Letters</i>, <i>109</i>(3), Article 033508. https://doi.org/10.1063/1.4959095</div>
</div>
-
dc.identifier.issn
0003-6951
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/149945
-
dc.description.abstract
We design and implement 3D-lumped element microwave cavities that spatially focus magnetic fields to a small mode volume. They allow coherent and uniform coupling to electron spins hosted by nitrogen vacancy centers in diamond. We achieve large homogeneous single spin coupling rates, with an enhancement of more than one order of magnitude compared to standard 3D cavities with a fundamental resonance at 3 GHz. Finite element simulations confirm that the magnetic field distribution is homogeneous throughout the entire sample volume, with a root mean square deviation of 1.54%. With a sample containing 10¹⁷ nitrogen vacancy electron spins, we achieve a collective coupling strength of Ω = 12 MHz, a cooperativity factor C = 27, and clearly enter the strong coupling regime. This allows to interface a macroscopic spin ensemble with microwave circuits, and the homogeneous Rabi frequency paves the way to manipulate the full ensemble population in a coherent way.
en
dc.language.iso
en
-
dc.relation.ispartof
Applied Physics Letters
-
dc.subject
Spin-spin interactions
en
dc.subject
Microwave cavity
en
dc.subject
Electronic circuits
en
dc.subject
Electromagnetism
en
dc.subject
Magnetic fields
en
dc.subject
Radiowave and microwave technology
en
dc.subject
Crystallographic defects
en
dc.subject
Finite-element analysis
en
dc.subject
Quantum optics
en
dc.subject
Descriptive statistics
en
dc.title
Collective strong coupling with homogeneous Rabi frequencies using a 3D lumped element microwave resonator
en
dc.type
Artikel
de
dc.type
Article
en
dc.type.category
Original Research Article
-
tuw.container.volume
109
-
tuw.container.issue
3
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
wb.publication.intCoWork
International Co-publication
-
tuw.researchTopic.id
Q4
-
tuw.researchTopic.id
Q1
-
tuw.researchTopic.name
Nanoelectronics
-
tuw.researchTopic.name
Photonics
-
tuw.researchTopic.value
50
-
tuw.researchTopic.value
50
-
dcterms.isPartOf.title
Applied Physics Letters
-
tuw.publication.orgunit
E136 - Institut für Theoretische Physik
-
tuw.publication.orgunit
E141-02 - Forschungsbereich Atom Physics and Quantum Optics
-
tuw.publisher.doi
10.1063/1.4959095
-
dc.date.onlinefirst
2016-07-21
-
dc.identifier.articleid
033508
-
dc.identifier.eissn
1077-3118
-
dc.description.numberOfPages
6
-
tuw.author.orcid
0000-0003-4169-2552
-
wb.sci
true
-
wb.sciencebranch
Physik, Astronomie
-
wb.sciencebranch.oefos
1030
-
wb.facultyfocus
Physik der Materie
de
wb.facultyfocus
Physics of Matter
en
wb.facultyfocus.faculty
E130
-
item.languageiso639-1
en
-
item.openairetype
research article
-
item.grantfulltext
restricted
-
item.fulltext
no Fulltext
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
crisitem.author.dept
E141-02 - Forschungsbereich Atom Physics and Quantum Optics
-
crisitem.author.dept
E141 - Atominstitut
-
crisitem.author.dept
E141 - Atominstitut
-
crisitem.author.dept
E141-02 - Forschungsbereich Atom Physics and Quantum Optics