<div class="csl-bib-body">
<div class="csl-entry">Halla, M., Hohage, T., Nannen, L., & Schöberl, J. (2016). Hardy space infinite elements for time harmonic wave equations with phase and group velocities of different signs. <i>Numerische Mathematik</i>, <i>133</i>(1), 103–139. https://doi.org/10.1007/s00211-015-0739-0</div>
</div>
-
dc.identifier.issn
0029-599X
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/150108
-
dc.description.abstract
Abstract We consider time harmonic wave equations in cylindrical wave-guides with physical solutions for which the signs of group and phase velocities differ. The perfectly matched layer methods select modes with positive phase velocity, and hence they yield stable, but unphysical solutions for such problems.We derive an infinite element
method for a physically correct discretization of such wave-guide problems which is based on a Laplace transform in propagation direction. In the Laplace domain the space of transformed solutions can be separated into a sum of a space of incoming and a space of outgoing functions where both function spaces are Hardy spaces of
a curved domain. The Hardy space is constructed such that it contains a simple and convenient Riesz basis with small condition numbers. In this paper the new method is only discussed for a one-dimensional fourth order model problem. Exponential convergence is shown. The method does not use a modal separation and works on an
interval of frequencies. Numerical experiments confirm exponential convergence.
en
dc.language.iso
en
-
dc.publisher
SPRINGER HEIDELBERG
-
dc.relation.ispartof
Numerische Mathematik
-
dc.subject
Applied Mathematics
-
dc.subject
Computational Mathematics
-
dc.title
Hardy space infinite elements for time harmonic wave equations with phase and group velocities of different signs
en
dc.type
Artikel
de
dc.type
Article
en
dc.description.startpage
103
-
dc.description.endpage
139
-
dc.type.category
Original Research Article
-
tuw.container.volume
133
-
tuw.container.issue
1
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
wb.publication.intCoWork
International Co-publication
-
tuw.researchTopic.id
C5
-
tuw.researchTopic.id
C4
-
tuw.researchTopic.name
Computer Science Foundations
-
tuw.researchTopic.name
Mathematical and Algorithmic Foundations
-
tuw.researchTopic.value
20
-
tuw.researchTopic.value
80
-
dcterms.isPartOf.title
Numerische Mathematik
-
tuw.publication.orgunit
E101-03 - Forschungsbereich Scientific Computing and Modelling
-
tuw.publisher.doi
10.1007/s00211-015-0739-0
-
dc.identifier.eissn
0945-3245
-
dc.description.numberOfPages
37
-
wb.sci
true
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch
Physik, Astronomie
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.oefos
1030
-
wb.facultyfocus
Analysis und Scientific Computing
de
wb.facultyfocus
Analysis and Scientific Computing
en
wb.facultyfocus.faculty
E100
-
item.languageiso639-1
en
-
item.grantfulltext
none
-
item.cerifentitytype
Publications
-
item.openairetype
research article
-
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
item.fulltext
no Fulltext
-
crisitem.author.dept
E101 - Institut für Analysis und Scientific Computing
-
crisitem.author.dept
E101-03 - Forschungsbereich Scientific Computing and Modelling
-
crisitem.author.dept
E101-03 - Forschungsbereich Scientific Computing and Modelling
-
crisitem.author.orcid
0000-0002-1250-5087
-
crisitem.author.parentorg
E100 - Fakultät für Mathematik und Geoinformation
-
crisitem.author.parentorg
E101 - Institut für Analysis und Scientific Computing
-
crisitem.author.parentorg
E101 - Institut für Analysis und Scientific Computing