<div class="csl-bib-body">
<div class="csl-entry">Mannion, M., & Kaindl, H. (2022). Enhancing Product Comparison through Automated Similarity Matching. In <i>The International Conference on Evaluation and Assessment in Software Engineering 2022</i> (pp. 463–464). https://doi.org/10.1145/3530019.3533679</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/150235
-
dc.description.abstract
The volume, variety and velocity of products in software-intensive systems product lines is increasing. One challenge is to understand the range of similarity between products. Reasons for product comparison include (i) to decide whether to build a new product or not (ii) to evaluate how products of the same type differ for strategic positioning or branding reasons (iii) to gauge if a product line needs to be reorganized (iv) to assess if a product falls within the national legislative and regulatory boundaries. We will discuss two different approaches to address this challenge. One is grounded in feature modelling, the other in case-based reasoning. We will also describe a specific product comparison process in which a product configured from a product line feature model is represented as a weighted binary string, the overall similarity between products is compared using a binary string metric, and the significance of individual feature combinations for product similarity can be explored by modifying the weights. We will illustrate our ideas with a mobile phone example, and discuss some of the benefits and limitations of this approach.
en
dc.language.iso
en
-
dc.relation.ispartofseries
International Conference Proceeding Series (ICPS)
-
dc.subject
binary strings
en
dc.subject
Feature reuse
en
dc.subject
product similarity
en
dc.title
Enhancing Product Comparison through Automated Similarity Matching
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.relation.isbn
9781450396134
-
dc.description.startpage
463
-
dc.description.endpage
464
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
The International Conference on Evaluation and Assessment in Software Engineering 2022
-
tuw.peerreviewed
true
-
tuw.researchTopic.id
I2
-
tuw.researchTopic.name
Computer Engineering and Software-Intensive Systems
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E384-01 - Forschungsbereich Software-intensive Systems
-
tuw.publisher.doi
10.1145/3530019.3533679
-
dc.description.numberOfPages
2
-
tuw.event.name
EASE 2022: The International Conference on Evaluation and Assessment in Software Engineering 2022
en
tuw.event.startdate
13-06-2022
-
tuw.event.enddate
15-06-2022
-
tuw.event.online
Hybrid
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Gothenburg
-
tuw.event.country
SE
-
tuw.event.presenter
Mannion, Mike
-
tuw.event.presenter
Kaindl, Hermann
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Elektrotechnik, Elektronik, Informationstechnik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
2020
-
wb.sciencebranch.value
50
-
wb.sciencebranch.value
50
-
item.openairetype
Inproceedings
-
item.openairetype
Konferenzbeitrag
-
item.grantfulltext
none
-
item.cerifentitytype
Publications
-
item.cerifentitytype
Publications
-
item.languageiso639-1
en
-
item.openairecristype
http://purl.org/coar/resource_type/c_18cf
-
item.openairecristype
http://purl.org/coar/resource_type/c_18cf
-
item.fulltext
no Fulltext
-
crisitem.author.dept
E384-01 - Forschungsbereich Software-intensive Systems