<div class="csl-bib-body">
<div class="csl-entry">Bryan, P., Ivaki, M. N., & Scheuer, J. (2023). Constant rank theorems for curvature problems via a viscosity approach. <i>Calculus of Variations and Partial Differential Equations</i>, <i>62</i>. https://doi.org/10.1007/s00526-023-02442-5</div>
</div>
-
dc.identifier.issn
0944-2669
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/150239
-
dc.description.abstract
An important set of theorems in geometric analysis consists of constant rank theorems for a wide variety of curvature problems. In this paper, for geometric curvature problems in compact and non-compact settings, we provide new proofs which are both elementary and short. Moreover, we employ our method to obtain constant rank theorems for homogeneous and non-homogeneous curvature equations in new geometric settings. One of the essential ingredients for our method is a generalization of a differential inequality in a viscosity sense satisfied by the smallest eigenvalue of a linear map Brendle et al. (Acta Math 219:1–16, 2017) to the one for the subtrace. The viscosity approach provides a concise way to work around the well known technical hurdle that eigenvalues are only Lipschitz in general. This paves the way for a simple induction argument.
en
dc.language.iso
en
-
dc.publisher
SPRINGER HEIDELBERG
-
dc.relation.ispartof
Calculus of Variations and Partial Differential Equations
-
dc.subject
Constant Rank theorem
en
dc.title
Constant rank theorems for curvature problems via a viscosity approach
en
dc.type
Article
en
dc.type
Artikel
de
dc.contributor.affiliation
Macquarie University, Australia
-
dc.contributor.affiliation
Goethe University Frankfurt, Germany
-
dc.type.category
Original Research Article
-
tuw.container.volume
62
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
wb.publication.intCoWork
International Co-publication
-
tuw.researchTopic.id
A3
-
tuw.researchTopic.name
Fundamental Mathematics Research
-
tuw.researchTopic.value
100
-
dcterms.isPartOf.title
Calculus of Variations and Partial Differential Equations
-
tuw.publication.orgunit
E104-06 - Forschungsbereich Konvexe und Diskrete Geometrie
-
tuw.publisher.doi
10.1007/s00526-023-02442-5
-
dc.date.onlinefirst
2023
-
dc.identifier.eissn
1432-0835
-
dc.description.numberOfPages
19
-
tuw.author.orcid
0000-0001-7540-7268
-
tuw.author.orcid
0000-0003-2664-1896
-
wb.sci
true
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
100
-
item.grantfulltext
none
-
item.openairetype
research article
-
item.cerifentitytype
Publications
-
item.languageiso639-1
en
-
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
item.fulltext
no Fulltext
-
crisitem.author.dept
E104-06 - Forschungsbereich Konvexe und Diskrete Geometrie
-
crisitem.author.dept
Goethe University Frankfurt
-
crisitem.author.orcid
0000-0001-7540-7268
-
crisitem.author.orcid
0000-0003-2664-1896
-
crisitem.author.parentorg
E104 - Institut für Diskrete Mathematik und Geometrie