<div class="csl-bib-body">
<div class="csl-entry">Heitzinger, T., & Stork, D. G. (2022). Improving semantic segmentation of fine art images using photographs rendered in a style learned from artworks. In <i>IS&T International Symposium on Electronic Imaging</i>. International Symposium on Electronic Imaging: Computer Vision and Image Analysis of Art 2022 (CVAA2022), United States of America (the). https://doi.org/10.2352/EI.2022.34.13.CVAA-169</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/150290
-
dc.description.abstract
Our central goal was to create automatic methods for semantic segmentation of human figures in images of fine art paintings. This is a difficult problem because the visual properties and statistics of artwork differ markedly from the natural photographs widely used in research in automatic segmentation. We used a deep neural network to transfer artistic style from paintings across several centuries to modern natural photographs in order to create a large data set of surrogate art images. We then used this data set to train a separate deep network for semantic image segmentation of genuine art images. Such data augmentation led to great improvement in the segmentation of difficult genuine artworks, revealed both qualitatively and quantitatively. Our unique technique of creating surrogate artworks should find wide use in many tasks in the growing field of computational analysis of fine art.
en
dc.language.iso
en
-
dc.subject
Semantic Segmentation
en
dc.subject
Art Images
en
dc.subject
Natural Photographs
en
dc.subject
Deep Network Transfer
en
dc.subject
Transfer Training
en
dc.title
Improving semantic segmentation of fine art images using photographs rendered in a style learned from artworks
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
IS&T International Symposium on Electronic Imaging
-
tuw.peerreviewed
true
-
tuw.researchTopic.id
I5
-
tuw.researchTopic.name
Visual Computing and Human-Centered Technology
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E193-01 - Forschungsbereich Computer Vision
-
tuw.publisher.doi
10.2352/EI.2022.34.13.CVAA-169
-
dc.description.numberOfPages
5
-
tuw.event.name
International Symposium on Electronic Imaging: Computer Vision and Image Analysis of Art 2022 (CVAA2022)
en
tuw.event.startdate
17-01-2022
-
tuw.event.enddate
19-01-2022
-
tuw.event.online
Online
-
tuw.event.type
Event for scientific audience
-
tuw.event.country
US
-
tuw.event.presenter
Heitzinger, Thomas
-
tuw.presentation.online
Online
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
90
-
wb.sciencebranch.value
10
-
item.languageiso639-1
en
-
item.grantfulltext
restricted
-
item.cerifentitytype
Publications
-
item.openairetype
conference paper
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.fulltext
no Fulltext
-
crisitem.author.dept
E193-01 - Forschungsbereich Computer Vision
-
crisitem.author.orcid
0000-0002-3129-5054
-
crisitem.author.parentorg
E193 - Institut für Visual Computing and Human-Centered Technology