<div class="csl-bib-body">
<div class="csl-entry">Donta, P. K., & Dustdar, S. (2022). The Promising Role of Representation Learning for Distributed Computing Continuum Systems. In <i>2022 IEEE International Conference on Service-Oriented System Engineering (SOSE)</i> (pp. 126–132). IEEE. https://doi.org/10.1109/SOSE55356.2022.00021</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/150321
-
dc.description.abstract
The distributed computing continuum systems (DCCS) and representation learning (ReL) are two diverse computer science technologies with their use cases, applications, and benefits. The DCCS helps increase flexibility with improved performance of hybrid IoT-Edge-Cloud infrastructures. In contrast, representation learning extracts the features (meaningful information) and underlying explanatory factors from the given datasets. With these benefits, using ReL for DCCS to improve its performance by monitoring the devices will increase the utilization efficiency, zero downtime, etc. In this context, this paper discusses the promising role of ReL for DCCS in terms of different aspects, including device condition monitoring, predictions, management of the systems, etc. This paper also provides a list of ReL algorithms and their pitfalls which helps DCCS by considering various constraints. In addition, this paper list different challenges imposed on ReL to analyze DCCS data. It also provides future research directions to make the systems autonomous, performing multiple tasks simultaneously with the help of other AI/ML approaches.
en
dc.language.iso
en
-
dc.subject
Causal inference
en
dc.subject
Compute continuum
en
dc.subject
Distributed systems
en
dc.subject
Representation learning
en
dc.title
The Promising Role of Representation Learning for Distributed Computing Continuum Systems
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.relation.isbn
978-1-6654-7534-1
-
dc.relation.doi
10.1109/SOSE55356.2022
-
dc.relation.issn
2640-8228
-
dc.description.startpage
126
-
dc.description.endpage
132
-
dc.type.category
Full-Paper Contribution
-
dc.relation.eissn
2642-6587
-
tuw.booktitle
2022 IEEE International Conference on Service-Oriented System Engineering (SOSE)
-
tuw.peerreviewed
true
-
tuw.relation.publisher
IEEE
-
tuw.publication.invited
invited
-
tuw.researchTopic.id
I4a
-
tuw.researchTopic.name
Information Systems Engineering
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E194-02 - Forschungsbereich Distributed Systems
-
tuw.publisher.doi
10.1109/SOSE55356.2022.00021
-
dc.description.numberOfPages
7
-
tuw.author.orcid
0000-0002-8233-6071
-
tuw.author.orcid
0000-0001-6872-8821
-
tuw.event.name
16th IEEE International Conference on Service-Oriented System Engineering (SOSE 2022) at IEEE CISOSE 2022
en
tuw.event.startdate
15-08-2022
-
tuw.event.enddate
18-08-2022
-
tuw.event.online
Hybrid
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
San Francisco Bay, CA
-
tuw.event.country
US
-
tuw.event.presenter
Donta, Praveen Kumar
-
tuw.event.presenter
Dustdar, Schahram
-
tuw.presentation.online
Online
-
wb.sciencebranch
Informatik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.value
100
-
item.languageiso639-1
en
-
item.grantfulltext
none
-
item.cerifentitytype
Publications
-
item.openairetype
conference paper
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.fulltext
no Fulltext
-
crisitem.author.dept
E194-02 - Forschungsbereich Distributed Systems
-
crisitem.author.dept
E194-02 - Forschungsbereich Distributed Systems
-
crisitem.author.orcid
0000-0002-8233-6071
-
crisitem.author.orcid
0000-0001-6872-8821
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering