<div class="csl-bib-body">
<div class="csl-entry">Kolb, T. E., Nalis, I., Sertkan, M., & Neidhardt, J. (2022). The Role of Bias in News Recommendation in the Perception of the Covid-19 Pandemic. In Kolb Thomas (Ed.), <i>Unofficial Proceedings of the 5th FAccTRec Workshop on Responsible Recommendation at RecSys 2022</i>. https://doi.org/10.48550/ARXIV.2209.07608</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/150340
-
dc.description.abstract
News recommender systems (NRs) have been shown to shape public discourse and to enforce behaviors that have a critical, oftentimes detrimental effect on democracies. Earlier research on the impact of media bias has revealed their strong impact on opinions and preferences. Responsible NRs are supposed to have depolarizing capacities, once they go beyond accuracy measures. We performed sequence prediction by using the BERT4Rec algorithm to investigate the interplay of news of coverage and user behavior. Based on live data and training of a large data set from one news outlet "event bursts", "rally around the flag" effect and "filter bubbles" were investigated in our interdisciplinary approach between data science and psychology. Potentials for fair NRs that go beyond accuracy measures are outlined via training of the models with a large data set of articles, keywords, and user behavior. The development of the news coverage and user behavior of the COVID-19 pandemic from primarily medical to broader political content and debates was traced. Our study provides first insights for future development of responsible news recommendation that acknowledges user preferences while stimulating diversity and accountability instead of accuracy, only.
en
dc.description.sponsorship
CDG Christian Doppler Forschungsgesellschaft
-
dc.language.iso
en
-
dc.subject
Computers and Society (cs.CY), Information Retrieval (cs.IR), FOS: Computer and information sciences, FOS: Computer and information sciences
en
dc.subject
https://facctrec.github.io/facctrec2022/cfp/
-
dc.title
The Role of Bias in News Recommendation in the Perception of the Covid-19 Pandemic
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.relation.grantno
CDL Neidhardt
-
dcterms.dateSubmitted
2022-09
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
Unofficial Proceedings of the 5th FAccTRec Workshop on Responsible Recommendation at RecSys 2022
-
tuw.peerreviewed
true
-
tuw.project.title
Christian Doppler Labor für Weiterentwicklung des State-of-the-Art von Recommender-Systemen in mehreren Domänen
-
tuw.researchTopic.id
I4a
-
tuw.researchTopic.name
Information Systems Engineering
-
tuw.researchTopic.value
100
-
tuw.linking
https://arxiv.org/pdf/2209.07608.pdf
-
tuw.publication.orgunit
E194-04 - Forschungsbereich Data Science
-
tuw.publisher.doi
10.48550/ARXIV.2209.07608
-
tuw.author.orcid
0000-0002-2340-0854
-
tuw.author.orcid
0000-0001-7184-1841
-
tuw.event.name
5th FAccTRec Workshop on Responsible Recommendation at RecSys 2022
en
tuw.event.startdate
23-09-2022
-
tuw.event.enddate
23-09-2022
-
tuw.event.online
Hybrid
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Seattle
-
tuw.event.country
US
-
tuw.event.presenter
Kolb, Thomas Elmar
-
wb.sciencebranch
Informatik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.value
100
-
item.openairetype
Inproceedings
-
item.openairetype
Konferenzbeitrag
-
item.grantfulltext
none
-
item.cerifentitytype
Publications
-
item.cerifentitytype
Publications
-
item.languageiso639-1
en
-
item.openairecristype
http://purl.org/coar/resource_type/c_18cf
-
item.openairecristype
http://purl.org/coar/resource_type/c_18cf
-
item.fulltext
no Fulltext
-
crisitem.project.funder
CDG Christian Doppler Forschungsgesellschaft
-
crisitem.project.grantno
CDL Neidhardt
-
crisitem.author.dept
E194-04 - Forschungsbereich E-Commerce
-
crisitem.author.dept
E194-04 - Forschungsbereich E-Commerce
-
crisitem.author.dept
E194-04 - Forschungsbereich E-Commerce
-
crisitem.author.dept
E194-04 - Forschungsbereich E-Commerce
-
crisitem.author.orcid
0000-0002-2340-0854
-
crisitem.author.orcid
0000-0003-0984-5221
-
crisitem.author.orcid
0000-0001-7184-1841
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering