<div class="csl-bib-body">
<div class="csl-entry">Kukolev, P., Chandra, A., Mikusalek, T., Prokes, A., Zemen, T., & Mecklenbräuker, C. (2015). In-vehicle Channel Sounding in the 5.8 GHz Band. <i>EURASIP Journal on Wireless Communications and Networking</i>, <i>2015</i>(57). https://doi.org/10.1186/s13638-015-0273-x</div>
</div>
-
dc.identifier.issn
1687-1472
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/150791
-
dc.description.abstract
The article reports vehicular channel measurements in the frequency band of 5.8 GHz for IEEE 802.11p standard. Experiments for both intra-vehicle and out-of-vehicle environments were carried out. It was observed that the large-scale variations (LSVs) of the power delay profiles (PDPs) can be best described through a two-term exponential decay model, in contrast to the linear models which are suitable for popular ultra-wideband (UWB) systems operating in the 3- to 11-GHz band. The small-scale variations (SSVs) are separated from the PDP by subtracting the LSV and characterized utilizing logistic, generalized extreme value (GEV), and normal distributions. Two sample Kolmogorov- Smirnov (K-S) tests validated that the logistic distribution is optimal for in-car, whereas the GEV distribution serves better for out-of-car measurements. For each measurement, the LSV trend was used to construct the respective channel impulse response (CIR), i.e., tap gains at different delays. Next, the CIR information is fed to an 802.11p simulation testbed to evaluate the bit error rate (BER) performance, following a Rician model. The BER results strongly vouch for the suitability of the protocol for in-car as well as out-of-car wireless applications in stationary environments.
en
dc.description.sponsorship
CDG Christian Doppler Forschungsgesellschaft
-
dc.language.iso
en
-
dc.publisher
Springer
-
dc.relation.ispartof
EURASIP Journal on Wireless Communications and Networking
-
dc.subject
Computer Science Applications
-
dc.subject
Signal Processing
-
dc.subject
Computer Networks and Communications
-
dc.subject
Intra-vehicle channel
-
dc.subject
IEEE802.11p
-
dc.subject
Channel sounding
-
dc.subject
Ultra-wideband
-
dc.subject
Power delay profile
-
dc.subject
Bit error rate
-
dc.title
In-vehicle Channel Sounding in the 5.8 GHz Band
en
dc.type
Artikel
de
dc.type
Article
en
dc.type.category
Original Research Article
-
tuw.container.volume
2015
-
tuw.container.issue
57
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
tuw.project.title
Christian Doppler Lab "Wireless Technologies for Sustainable Mobility"
-
tuw.researchTopic.id
I7
-
tuw.researchTopic.name
Telecommunication
-
tuw.researchTopic.value
100
-
dcterms.isPartOf.title
EURASIP Journal on Wireless Communications and Networking