<div class="csl-bib-body">
<div class="csl-entry">Brennecke, C., Linke, A., Merdon, C., & Schöberl, J. (2015). Optimal and pressure-independent L2 velocity error estimates for a modified Crouzeix-Raviart Stokes element with BDM. <i>JOURNAL OF COMPUTATIONAL MATHEMATICS</i>, <i>33</i>(2), 191–208. https://doi.org/10.4208/jcm.1411-m4499</div>
</div>
-
dc.identifier.issn
0254-9409
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/151843
-
dc.description.abstract
Abstract
Nearly all inf-sup stable mixed finite elements for the incompressible Stokes equations relax the divergence constraint. The price to pay is that a priori estimates for the velocity error become pressure-dependent, while divergence-free mixed finite elements deliver pressure-independent estimates. A recently introduced new variational crime using lowest-order Raviart-Thomas velocity reconstructions delivers a much more robust modified Crouzeix-Raviart element, obeying an optimal pressure-independent discrete H¹ velocity estimate. Refining this approach, a more sophisticated variational crime employing the lowest-order BDM element is proposed, which also allows proving an optimal pressure-independent L² velocity error. Numerical examples confirm the analysis and demonstrate the improved robustness in the Navier-Stokes case.
en
dc.language.iso
en
-
dc.publisher
GLOBAL SCIENCE PRESS
-
dc.relation.ispartof
JOURNAL OF COMPUTATIONAL MATHEMATICS
-
dc.subject
Computational Mathematics
-
dc.subject
Incompressible Navier-Stokes equations
-
dc.subject
Variational crime
-
dc.subject
Crouzeix-Raviart finite element
-
dc.subject
Divergence-free mixed method
-
dc.subject
A priori error estimates.
-
dc.title
Optimal and pressure-independent L2 velocity error estimates for a modified Crouzeix-Raviart Stokes element with BDM
en
dc.type
Artikel
de
dc.type
Article
en
dc.description.startpage
191
-
dc.description.endpage
208
-
dc.type.category
Original Research Article
-
tuw.container.volume
33
-
tuw.container.issue
2
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
tuw.researchTopic.id
C6
-
tuw.researchTopic.id
C5
-
tuw.researchTopic.id
C4
-
tuw.researchTopic.name
Modelling and Simulation
-
tuw.researchTopic.name
Computer Science Foundations
-
tuw.researchTopic.name
Mathematical and Algorithmic Foundations
-
tuw.researchTopic.value
10
-
tuw.researchTopic.value
20
-
tuw.researchTopic.value
70
-
dcterms.isPartOf.title
JOURNAL OF COMPUTATIONAL MATHEMATICS
-
tuw.publication.orgunit
E101-03 - Forschungsbereich Scientific Computing and Modelling
-
tuw.publisher.doi
10.4208/jcm.1411-m4499
-
dc.identifier.eissn
1991-7139
-
dc.description.numberOfPages
18
-
wb.sci
true
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch
Physik, Astronomie
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.oefos
1030
-
wb.facultyfocus
Analysis und Scientific Computing
de
wb.facultyfocus
Analysis and Scientific Computing
en
wb.facultyfocus.faculty
E100
-
item.grantfulltext
restricted
-
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
item.openairetype
research article
-
item.languageiso639-1
en
-
item.cerifentitytype
Publications
-
item.fulltext
no Fulltext
-
crisitem.author.dept
E101-03 - Forschungsbereich Scientific Computing and Modelling
-
crisitem.author.orcid
0000-0002-1250-5087
-
crisitem.author.parentorg
E101 - Institut für Analysis und Scientific Computing