<div class="csl-bib-body">
<div class="csl-entry">Mußnig, F. (2022, December 8). Characterizations of intrinsic volumes on convex bodies and convex functions. <i>Snapshots of Modern Mathematics from Oberwolfach</i>, <i>11/2022</i>. https://doi.org/10.14760/SNAP-2022-011-EN</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/152251
-
dc.description.abstract
If we want to express the size of a two-dimensional shape with a number, then we usually think about its area or circumference. But what makes these quantities so special? We give an answer to this question in terms of classical mathematical results. We also take a look at applications and new generalizations to the
setting of functions.
en
dc.description.sponsorship
Fonds zur Förderung der wissenschaftlichen Forschung (FWF)
-
dc.language.iso
en
-
dc.subject
valuation
en
dc.subject
convex body
en
dc.subject
convex function
en
dc.subject
characterization
en
dc.subject
surface area
en
dc.title
Characterizations of intrinsic volumes on convex bodies and convex functions
en
dc.type
Special Contribution
en
dc.type
Spezialbeitrag
de
dc.relation.grantno
J 4490
-
dc.type.category
Article in a Magazine
-
tuw.container.issue
11/2022
-
tuw.project.title
Hessische Ungleichungen und Erweiterungen auf Sobolev-Räumen
-
tuw.researchTopic.id
A3
-
tuw.researchTopic.name
Fundamental Mathematics Research
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E104-06 - Forschungsbereich Konvexe und Diskrete Geometrie
-
tuw.publisher.doi
10.14760/SNAP-2022-011-EN
-
dc.description.numberOfPages
12
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
100
-
dc.relation.ispartofmagazine
Snapshots of modern mathematics from Oberwolfach
-
item.languageiso639-1
en
-
item.openairetype
text
-
item.grantfulltext
none
-
item.fulltext
no Fulltext
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_18cf
-
crisitem.author.dept
E104-06 - Forschungsbereich Konvexe und Diskrete Geometrie
-
crisitem.author.orcid
0000-0003-2012-1590
-
crisitem.author.parentorg
E104 - Institut für Diskrete Mathematik und Geometrie