<div class="csl-bib-body">
<div class="csl-entry">Saribatur, Z. G., & Wallner, J. P. (2021). Existential Abstraction on Argumentation Frameworks via Clustering. In <i>Proceedings of the Eighteenth International Conference on Principles of Knowledge Representation and Reasoning</i> (pp. 549–559). https://doi.org/10.24963/kr.2021/52</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/152294
-
dc.description.abstract
Argumentation in Artificial Intelligence (AI) builds on formal approaches to reasoning argumentatively. Common to many such approaches is to use argumentation frameworks (AFs) as reasoning engines, with AFs being composed of arguments and attacks between arguments, which are instantiated from knowledge bases in a principle-based manner. While representing what can be argued for in an AF provides a conceptually clean way, this process can face challenges arising from generating a large number of arguments, which can act as a barrier to explainability. Inspired by successful approaches to model checking where the state explosion is mitigated by applying existential abstraction, we study an adaption of existential abstraction in form of clustering arguments in an AF to address an associated "argument explosion". In this paper, we provide a foundational investigation of this form of existential abstraction by defining semantics of the resulting clustered AFs, which balance two inherent aspects of existential abstractions: abstracting from concrete AFs and not permitting too much spuriousness (i.e., conclusions that hold on the abstraction but not on the original AF). Moreover, we show properties of clustered AFs, including complexity results, discuss use of clusterings for explaining results of reasoning tasks, and employ the recently introduced methodology of abstraction in answer set programming (ASP) for obtaining and reasoning over clustered AFs.
en
dc.language.iso
en
-
dc.subject
Argumentation
en
dc.subject
Argumentation Frameworks
en
dc.subject
Abstraction
en
dc.title
Existential Abstraction on Argumentation Frameworks via Clustering
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.contributor.affiliation
Technische Universität Graz, Österreich
-
dc.relation.isbn
978-1-956792-99-7
-
dc.relation.issn
2334-1033
-
dc.description.startpage
549
-
dc.description.endpage
559
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
Proceedings of the Eighteenth International Conference on Principles of Knowledge Representation and Reasoning
-
tuw.peerreviewed
true
-
tuw.researchTopic.id
I1
-
tuw.researchTopic.name
Logic and Computation
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E192-02 - Forschungsbereich Databases and Artificial Intelligence
-
tuw.publisher.doi
10.24963/kr.2021/52
-
dc.description.numberOfPages
11
-
tuw.author.orcid
0000-0002-3051-1966
-
tuw.event.name
18th International Conference on Principles of Knowledge Representation and Reasoning
-
tuw.event.startdate
03-11-2021
-
tuw.event.enddate
12-11-2021
-
tuw.event.online
Online
-
tuw.event.type
Event for scientific audience
-
tuw.event.country
INT
-
tuw.event.presenter
Wallner, Johannes P.
-
tuw.presentation.online
Online
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
80
-
wb.sciencebranch.value
20
-
item.fulltext
no Fulltext
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.cerifentitytype
Publications
-
item.openairetype
conference paper
-
item.grantfulltext
none
-
item.languageiso639-1
en
-
crisitem.author.dept
E192-02 - Forschungsbereich Databases and Artificial Intelligence