<div class="csl-bib-body">
<div class="csl-entry">Müller, S. (2022, June 29). <i>A stationary-tower-free proof of sealing from a supercompact</i> [Conference Presentation]. Logic Colloquium 2022, Iceland. http://hdl.handle.net/20.500.12708/152571</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/152571
-
dc.description.abstract
Sealing is a generic absoluteness principle for the theory of the universally Baire sets of reals introduced by Woodin. It is deeply connected to the Inner Model Program and plays a prominent role in recent advances in inner model theory. Woodin showed in his famous Sealing Theorem that in the presence of a proper class of Woodin cardinals Sealing holds after collapsing a supercompact cardinal. I will outline the importance of Sealing and discuss a new and stationary-tower-free proof of Woodin’s Sealing Theorem that is based on Sargsyan’s and Trang’s proof of Sealing from iterability. This is joint work with Grigor Sargsyan and Bartosz Wcisło.
en
dc.language.iso
en
-
dc.subject
Sealing
en
dc.title
A stationary-tower-free proof of sealing from a supercompact
en
dc.type
Presentation
en
dc.type
Vortrag
de
dc.type.category
Conference Presentation
-
tuw.publication.invited
invited
-
tuw.researchTopic.id
C4
-
tuw.researchTopic.name
Mathematical and Algorithmic Foundations
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E104-01 - Forschungsbereich Algebra
-
tuw.author.orcid
0000-0002-7224-187X
-
tuw.event.name
Logic Colloquium 2022
-
tuw.event.startdate
27-06-2022
-
tuw.event.enddate
01-07-2022
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.country
IS
-
tuw.event.institution
Association for Symbolic Logic
-
tuw.event.presenter
Müller, Sandra
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
100
-
item.languageiso639-1
en
-
item.openairetype
conference paper not in proceedings
-
item.grantfulltext
none
-
item.fulltext
no Fulltext
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_18cp
-
crisitem.author.dept
E104-08 - Forschungsbereich Mengenlehre
-
crisitem.author.orcid
0000-0002-7224-187X
-
crisitem.author.parentorg
E104 - Institut für Diskrete Mathematik und Geometrie