<div class="csl-bib-body">
<div class="csl-entry">Levajkovic, T. (2022, November). <i>Spectral methods for stochastic partial differential equations and the related optimal control problem</i> [Presentation]. Seminar AG Analysis & Stochastic, Dresden, Germany.</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/152852
-
dc.description.abstract
This talk is devoted to spectral methods for solving linear and nonlinear stochastic partial differential equations with applications. The aim is to solve these equations using the polynomial chaos expansion (PCE) method. This is a spectral method based on the tensor product of deterministic orthogonal polynomials as a basis in the space of square integrable stochastic processes. We focus on stochastic (non)linear evolution equations where the coefficients, initial and boundary conditions might be highly singular, i.e., they are generalized stochastic processes. Examples include reaction-diffusion equations, nonlinear heat equations, time dependent Schrödinger equations, motion of an elastic string in a viscous random environment, etc. Using the PCE method combined with operator theory, semigroup theory, and theory of deterministic partial differential equations, we prove that the stochastic evolution equations under consideration have unique solutions in appropriate (weighted) spaces of stochastic processes. The obtained solutions are given in explicit forms, which allows an efficient numerical approximation. In addition, we consider the related stochastic optimal control problem where the cost functional is quadratic. We provide a novel framework for solving these optimal control problems using the PCE approach. Finally, we briefly discuss an splitting-PCE method for computing the optimal state, i.e., the state equation including the optimal control. Numerical experiments show the performance of the proposed method.
en
dc.language.iso
en
-
dc.subject
Stochastic partial differential equations
en
dc.subject
polynomial chaos expansion method
en
dc.subject
reaction-diffusion equations
en
dc.subject
nonlinear heat equations
en
dc.subject
splitting methods
en
dc.subject
related optimal control problems
en
dc.title
Spectral methods for stochastic partial differential equations and the related optimal control problem
en
dc.type
Presentation
en
dc.type
Vortrag
de
dc.type.category
Presentation
-
tuw.publication.invited
invited
-
tuw.researchTopic.id
C4
-
tuw.researchTopic.id
A3
-
tuw.researchTopic.name
Mathematical and Algorithmic Foundations
-
tuw.researchTopic.name
Fundamental Mathematics Research
-
tuw.researchTopic.value
30
-
tuw.researchTopic.value
70
-
tuw.publication.orgunit
E105-08 - Forschungsbereich Angewandte Statistik
-
tuw.event.name
Seminar AG Analysis & Stochastic
en
tuw.event.startdate
03-11-2022
-
tuw.event.enddate
03-11-2022
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Dresden
-
tuw.event.country
DE
-
tuw.event.institution
TU Dresden
-
tuw.event.presenter
Levajkovic, Tijana
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
100
-
item.openairetype
Presentation
-
item.openairetype
Vortrag
-
item.grantfulltext
none
-
item.cerifentitytype
Publications
-
item.cerifentitytype
Publications
-
item.languageiso639-1
en
-
item.openairecristype
http://purl.org/coar/resource_type/c_18cf
-
item.openairecristype
http://purl.org/coar/resource_type/c_18cf
-
item.fulltext
no Fulltext
-
crisitem.author.dept
E105-08 - Forschungsbereich Angewandte Statistik
-
crisitem.author.parentorg
E105 - Institut für Stochastik und Wirtschaftsmathematik