<div class="csl-bib-body">
<div class="csl-entry">Varonka, A., & Kovacs, L. (2022, October 12). <i>On the Undecidability of Loop Analysis</i> [Conference Presentation]. Reachability Problems, Kaiserslautern, Germany. https://doi.org/10.1007/978-3-031-19135-0</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/152998
-
dc.description.abstract
Our work addresses two central questions of program analysis, termination and invariant generation of loops. Already simple infinite-state systems, such as loops with assignments only, have intrinsically complex reachable sets and render variants of these problems undecidable.
In the talk, we give an account of the existing body of work on the boundary of (un-)decidability. We contribute to the line of work related to the question raised by Braverman in 2006: ``How much non-determinism can be introduced in a linear loop before termination becomes undecidable?'' We show that termination of loops with a purely non-deterministic choice between linear updates cannot be answered by an algorithm. To our knowledge, this is the most restricted setting in which undecidability has been shown. Moreover, it contrasts the case of a single linear update where termination (i.e., reachability) is known decidable.
We also turn to the problem of computing the strongest algebraic invariant of a program, that is, all polynomial relations among program variables. Despite a complete algorithm for multi-path affine programs, allowing arbitrary polynomial assignments is known to result in the unsolvability of invariant generation. We point out that negative results do not actually exploit general polynomial updates. There exists no algorithm computing strongest algebraic invariants already for programs with quadratic updates or updates guarded by affine equalities.
-
dc.language.iso
en
-
dc.subject
program analysis
en
dc.subject
termination
en
dc.subject
undecidability
-
dc.subject
loop invariants
-
dc.title
On the Undecidability of Loop Analysis
en
dc.type
Presentation
en
dc.type
Vortrag
de
dc.type.category
Conference Presentation
-
tuw.researchTopic.id
I1
-
tuw.researchTopic.name
Logic and Computation
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E192-04 - Forschungsbereich Formal Methods in Systems Engineering
-
tuw.publication.orgunit
E056-13 - Fachbereich LogiCS
-
tuw.publication.orgunit
E192 - Institut für Logic and Computation
-
tuw.publication.orgunit
E056 - Doctoral School
-
tuw.publisher.doi
10.1007/978-3-031-19135-0
-
tuw.author.orcid
0000-0001-5758-0657
-
tuw.author.orcid
0000-0002-8299-2714
-
tuw.event.name
Reachability Problems
-
tuw.event.startdate
17-10-2022
-
tuw.event.enddate
19-10-2022
-
tuw.event.online
Hybrid
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Kaiserslautern
-
tuw.event.country
DE
-
tuw.event.institution
Max Planck Institute for Software Systems (MPI-SWS)
-
tuw.event.presenter
Varonka, Anton
-
tuw.event.track
Single Track
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
50
-
wb.sciencebranch.value
50
-
item.cerifentitytype
Publications
-
item.cerifentitytype
Publications
-
item.fulltext
no Fulltext
-
item.grantfulltext
none
-
item.openairecristype
http://purl.org/coar/resource_type/c_18cf
-
item.openairecristype
http://purl.org/coar/resource_type/c_18cf
-
item.openairetype
Presentation
-
item.openairetype
Vortrag
-
item.languageiso639-1
en
-
crisitem.author.dept
E192-04 - Forschungsbereich Formal Methods in Systems Engineering
-
crisitem.author.dept
E192-04 - Forschungsbereich Formal Methods in Systems Engineering