<div class="csl-bib-body">
<div class="csl-entry">Sertkan, M., & Neidhardt, J. (2022). Exploring Expressed Emotions for Neural News Recommendation. In <i>UMAP ’22 Adjunct: Adjunct Proceedings of the 30th ACM Conference on User Modeling, Adaptation and Personalization</i> (pp. 22–28). Association for Computing Machinery. https://doi.org/10.1145/3511047.3536414</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/153156
-
dc.description.abstract
Due to domain-specific challenges such as short item lifetimes and continuous cold-start issues, news recommender systems rely more on content-based methods to deduce reliable user models and make personalized recommendations. Research has shown that alongside the content of an item, the way it is presented to the users also plays a critical role. In this work, we focus on the effect of incorporating expressed emotions within news articles on recommendation performance. We propose a neural news recommendation model that disentangles semantic and emotional modeling of news articles and users. While we exploit the textual content for the semantic representation, we extract and combine emotions of different information levels for the emotional representation. Offline experiments on a real-world dataset show that our approach outperforms non-emotion-aware solutions significantly. Finally, we provide a future outline, where we plan to investigate a) the online performance and b) the explainability/explorability of our approach.
en
dc.description.sponsorship
CDG Christian Doppler Forschungsgesellschaft
-
dc.language.iso
en
-
dc.subject
diversity
en
dc.subject
emotions
en
dc.subject
neural networks
en
dc.subject
news recommendation
en
dc.title
Exploring Expressed Emotions for Neural News Recommendation
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.relation.isbn
978-1-4503-9232-7
-
dc.description.startpage
22
-
dc.description.endpage
28
-
dc.relation.grantno
CDL Neidhardt
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
UMAP '22 Adjunct: Adjunct Proceedings of the 30th ACM Conference on User Modeling, Adaptation and Personalization
-
tuw.peerreviewed
true
-
tuw.relation.publisher
Association for Computing Machinery
-
tuw.relation.publisherplace
New York, NY, United States
-
tuw.project.title
Christian Doppler Labor für Weiterentwicklung des State-of-the-Art von Recommender-Systemen in mehreren Domänen
-
tuw.researchTopic.id
I4a
-
tuw.researchTopic.name
Information Systems Engineering
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E194-04 - Forschungsbereich Data Science
-
tuw.publisher.doi
10.1145/3511047.3536414
-
dc.description.numberOfPages
7
-
tuw.author.orcid
0000-0001-7184-1841
-
tuw.event.name
UMAP ’22: 30th ACM Conference on User Modeling, Adaptation and Personalization
en
dc.description.sponsorshipexternal
EU Horizon 2020
-
dc.relation.grantnoexternal
Grant No. 822670
-
tuw.event.startdate
04-07-2022
-
tuw.event.enddate
07-07-2022
-
tuw.event.online
Hybrid
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Barcelona
-
tuw.event.country
ES
-
tuw.event.presenter
Sertkan, Mete
-
tuw.event.track
Multi Track
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Wirtschaftswissenschaften
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
5020
-
wb.sciencebranch.value
90
-
wb.sciencebranch.value
10
-
item.languageiso639-1
en
-
item.openairetype
conference paper
-
item.grantfulltext
restricted
-
item.fulltext
no Fulltext
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
crisitem.author.dept
E194-04 - Forschungsbereich Data Science
-
crisitem.author.dept
E194-04 - Forschungsbereich Data Science
-
crisitem.author.orcid
0000-0003-0984-5221
-
crisitem.author.orcid
0000-0001-7184-1841
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering