<div class="csl-bib-body">
<div class="csl-entry">Chajda, I., & Länger, H. (2023). Conditions forcing the existence of relative complements in lattices and posets. <i>Mathematica Slovaca</i>, <i>73</i>(1), 15–24. https://doi.org/10.1515/ms-2023-0003</div>
</div>
-
dc.identifier.issn
0139-9918
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/153223
-
dc.description.abstract
It is elementary and well known that if an element x of a bounded modular lattice L has a complement in L then x has a relative complement in every interval [a, b] containing x. We show that the relatively strong assumption of modularity of L can be replaced by a weaker one formulated in the language of so-called modular triples. We further show that, in general, we need not suppose that x has a complement in L . By introducing the concept of modular triples in posets, we extend our results obtained for lattices to posets. It should be remarked that the notion of a complement can be introduced also in posets that are not bounded.
en
dc.language.iso
en
-
dc.publisher
WALTER DE GRUYTER GMBH
-
dc.relation.ispartof
Mathematica Slovaca
-
dc.subject
complement
en
dc.subject
relative complement
en
dc.subject
complemented lattice
en
dc.subject
complemented poset
en
dc.subject
modular poset
en
dc.subject
distributive triple
en
dc.subject
modular triple
en
dc.title
Conditions forcing the existence of relative complements in lattices and posets
en
dc.type
Article
en
dc.type
Artikel
de
dc.contributor.affiliation
Palacký University Olomouc, Czechia
-
dc.description.startpage
15
-
dc.description.endpage
24
-
dc.type.category
Original Research Article
-
tuw.container.volume
73
-
tuw.container.issue
1
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
wb.publication.intCoWork
International Co-publication
-
tuw.researchTopic.id
X1
-
tuw.researchTopic.name
Beyond TUW-research foci
-
tuw.researchTopic.value
100
-
dcterms.isPartOf.title
Mathematica Slovaca
-
tuw.publication.orgunit
E104-01 - Forschungsbereich Algebra
-
tuw.publisher.doi
10.1515/ms-2023-0003
-
dc.identifier.eissn
1337-2211
-
dc.description.numberOfPages
10
-
tuw.author.orcid
0000-0003-3840-3879
-
dc.description.sponsorshipexternal
Austrian Science Fund
-
dc.description.sponsorshipexternal
Czech Science Foundation
-
dc.description.sponsorshipexternal
OeAD-GmbH
-
dc.description.sponsorshipexternal
IGA
-
dc.relation.grantnoexternal
I 4579-N
-
dc.relation.grantnoexternal
20-09869L
-
dc.relation.grantnoexternal
CZ 02/2019
-
dc.relation.grantnoexternal
PrF 2021 030
-
wb.sci
true
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
100
-
item.languageiso639-1
en
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
item.openairetype
research article
-
item.grantfulltext
restricted
-
item.fulltext
no Fulltext
-
crisitem.author.dept
Palacký University Olomouc
-
crisitem.author.dept
E104 - Institut für Diskrete Mathematik und Geometrie