<div class="csl-bib-body">
<div class="csl-entry">Koch, M., Lechner, C., Lauterborn, W., & Mettin, R. (2022, July). <i>Bubble collapse directly at an object: fast jet and shock wave</i> [Conference Presentation]. 22nd International Symposium on Nonlinear Acoustics, Oxford, United Kingdom of Great Britain and Northern Ireland (the).</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/153704
-
dc.description.abstract
Cavitation bubbles close to solid surfaces have been studied intensively in the last decades.
Nevertheless, the issue is still good for surprises. A striking example is the formation of very fast,
thin jets from bubbles oscillating in very close proximity to a flat solid surface [2].
These jets result from self-impact of annular inflow at the axis of symmetry and can reach a speed
of the order of 1000 m/s. The annular inflow and thereby fast jet formation, paradoxically, is
viscosity induced, since the boundary layer at the solid surface plays a distinctive role. In this
presentation, we describe details of the mechanism leading to fast jet formation and present
numerical and experimental results on the phenomenon.
The numerical model consists of a bubble filled with a small amount of non-condensable gas in a
compressible liquid. We use the volume of fluid method to capture the interface between liquid and
gas. The Navier Stokes equations are discretized with the finite volume method. The model is
implemented in the open source software package OpenFOAM [1]. From the computations, one can
derive the pressure load on the object from jet impact and bubble collapse shock wave.
Capturing the phenomenon experimentally is a notoriously difficult task, since the short time
window of ~100 ns and small spatial region of ~50 μm where the jet occurs are demanding. Our first
photographic evidence of this phenomenon is given, using high-speed imaging of laser-generated
bubbles under normal ambient conditions, enhanced to subpixel resolution via raytracing of a fitting
CFD simulation [3, 4].
1] Koch, M.; Lechner, C.; Reuter, F.; Köhler, K.; Mettin, R.; Lauterborn, W. (2016) "Numerical modeling of laser generated cavitation
bubbles with the finite volume and volume of fluid method, using OpenFOAM". Comput. Fluids, 126, 71–90.
doi:10.1016/j.compfluid.2015.11.008.
[2] Lechner, C.; Lauterborn, W.; Koch, M.; Mettin, R. (2019) Fast, thin jets from bubbles expanding and collapsing in extreme vicinity
to a solid boundary: A numerical study. Phys. Rev. Fluids, 4, 021601. doi:10.1103/PhysRevFluids.4.021601
[3] Koch, M. (2020) “Laser cavitation bubbles at objects: Merging numerical and experimental methods”.
http://dx.doi.org/10.53846/goediss-8326. PhD thesis. Georg-August-Universität Göttingen, Third Physical Institute.
[4] Koch, M.; Rosselló, J.M.; Lechner, C.; Lauterborn, W.; Eisener, J.; Mettin, R. (2021) Theory-assisted optical ray tracing to extract
cavitation-bubble shapes from experiment. Exp. Fluids, 62, 60. doi:10.1007/s00348-020-03075-6
en
dc.description.sponsorship
Fonds zur Förderung der wissenschaftlichen Forschung (FWF)
-
dc.language.iso
en
-
dc.subject
cavitation bubbles
en
dc.subject
jet formation
en
dc.subject
fast jets
en
dc.subject
laser-generated bubbles
en
dc.subject
volume of fluid method
en
dc.subject
OpenFOAM
en
dc.title
Bubble collapse directly at an object: fast jet and shock wave
en
dc.type
Presentation
en
dc.type
Vortrag
de
dc.contributor.affiliation
Georg-August-Universität Göttingen
-
dc.contributor.affiliation
Georg-August-Universität Göttingen
-
dc.contributor.affiliation
Georg-August-Universität Göttingen
-
dc.relation.grantno
I5349-N
-
dc.type.category
Conference Presentation
-
tuw.project.title
Komplexe Dynamik von Kavitationsblasen an Objekten