<div class="csl-bib-body">
<div class="csl-entry">Coelho, A., Albu-Schaeffer, A., Sachtler, A., Mishra, H., Bicego, D., Ott, C., & Franchi, A. (2023). EigenMPC: An Eigenmanifold-Inspired Model-Predictive Control Framework for Exciting Efficient Oscillations in Mechanical Systems. In <i>Proceedings 2022 IEEE 61st Conference on Decision and Control (CDC)</i> (pp. 2437–2442). IEEE. https://doi.org/10.1109/CDC51059.2022.9992915</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/153888
-
dc.description.abstract
This paper proposes a Nonlinear Model-Predictive Control (NMPC) method capable of finding and converging to energy-efficient regular oscillations, which require no control action to be sustained. The approach builds up on the recently developed Eigenmanifold theory, which defines the sets of line-shaped oscillations of a robot as an invariant two-dimensional submanifold of its state space. By defining the control problem as a nonlinear program (NLP), the controller is able to deal with constraints in the state and control variables and be energy-efficient not only in its final trajectory but also during the convergence phase. An initial implementation of this approach is proposed, analyzed, and tested in simulation.
en
dc.language.iso
en
-
dc.relation.ispartofseries
IEEE Conference on Decision and Control
-
dc.subject
Nonlinear Eigenmodes
en
dc.subject
Model Predictive Control
en
dc.title
EigenMPC: An Eigenmanifold-Inspired Model-Predictive Control Framework for Exciting Efficient Oscillations in Mechanical Systems
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.contributor.affiliation
Deutsches Zentrum für Luft- und Raumfahrt e. V. (DLR), Germany
-
dc.contributor.affiliation
Deutsches Zentrum für Luft- und Raumfahrt e. V. (DLR), Germany
-
dc.contributor.affiliation
Deutsches Zentrum für Luft- und Raumfahrt e. V. (DLR), Germany
-
dc.contributor.affiliation
University of Twente, Netherlands (the)
-
dc.contributor.affiliation
University of Twente, Netherlands (the)
-
dc.relation.isbn
9781665467612
-
dc.relation.doi
10.1109/CDC51059.2022
-
dc.description.startpage
2437
-
dc.description.endpage
2442
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
Proceedings 2022 IEEE 61st Conference on Decision and Control (CDC)