<div class="csl-bib-body">
<div class="csl-entry">Achleitner, F. (2022, February 15). <i>Short- and long-time behavior in (hypo)coercive ODE-systems and kinetic partial differential equations</i> [Conference Presentation]. One-Parameter Semigroups of Operators (OPSO), Nischni Nowgorod, Russian Federation (the).</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/154112
-
dc.description.abstract
We will discuss hypocoercivity on the level of ODEs and devise a new way to construct strict Lyapunov functionals: Systems of ODEs dx/dt = Ax with semi-dissipative matrix A (i.e. the Hermitian part of matrix A is negative semi-definite) are Lyapunov stable but not necessarily asymptotically stable. There exist many equivalent conditions, to decide if the ODE system is asymptotically stable or not. Some conditions allow to construct a strict Lyapunov
functional in a natural way. We will review these classical conditions/approaches and identify a "hypocoercivity index" which e.g. characterizes the short-time asymptotics of the propagator norm for semi-dissipative ODEs.
Finally, we apply these results to study the long-time behavior of (hypocoercive) nonlinear BGK-type model with constant collision frequency, and (kinetic) Fokker-Planck equations. In particular, we will compare our strict Lyapunov functionals for the linear(ized) kinetic equations with other classical approaches.
en
dc.description.sponsorship
Fonds zur Förderung der wissenschaftlichen Forschung (FWF)
-
dc.language.iso
en
-
dc.subject
hypocoercivity
en
dc.subject
Lyapunov functionals
en
dc.subject
BGK models
en
dc.subject
kinetic equations
en
dc.title
Short- and long-time behavior in (hypo)coercive ODE-systems and kinetic partial differential equations
en
dc.type
Presentation
en
dc.type
Vortrag
de
dc.relation.grantno
F 6502-N36
-
dc.type.category
Conference Presentation
-
tuw.publication.invited
invited
-
tuw.project.title
Langzeitverhalten von kontinuierlichen dissipativen Systemen