<div class="csl-bib-body">
<div class="csl-entry">Rosenberg, E. E., Antoniadou, M., Kanakaki, C., Klampfl, B., Müller, R. D., Greibich, M., & Kahr, J. (2022, July 1). <i>Revisiting the van Deemter Equation: Various Ways to Speed up Chromatography</i> [Keynote Presentation]. 26th International Symposium on Separation Sciences (ISSS 2022), Ljubljana, Slovenia. http://hdl.handle.net/20.500.12708/154262</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/154262
-
dc.description.abstract
Gas chromatography is the most powerful technique to separate mixtures of volatile compounds; however, doing so normally requires a significant amount of time, and imposes thus limitation to the speed and the time resolution that can be achieved with chromatographic measurements. Many technologically relevant processes do, however, require measurements with a time resolution that is at the scale of one minute, or potentially even less. From the van Deemter equation it is obvious that it is impossible to maximise separation speed beyond the optimum separation velocity without losing efficiency [1]. A closer inspection of this equation reveals, however, various possibilities to gain separation speed.
We will discuss various approaches to speed up chromatographic separation and to gain time resolution between measurements that we have developed and applied in response to the need of monitoring the volatile compounds formed by the degradation of the organic electrolyte of lithium ion batteries during various use conditions. As extreme operation conditions or misuse can lead to catastrophic degradation of the electrolyte in the lithium ion battery, fast responding chromatographic techniques are required [2]. These include the use of vacuum outlet conditions, multiplexing, and of fast (positive or negative) thermal gradients. Their individual benefits and limitations will be presented and critically discussed here, with a particular view to their practical applicability.
References
[1] J.J. van Deemter, F.J. Zuiderweg, A. Klinkenberg, Chem. Eng. Sci. 5 (1956) 271-289.
[2] Y.P. Stenzel, F. Horsthemke, M. Winter, S. Nowak, Separations 2019, 6(2), 26.
Acknowledgements
The authors gratefully acknowledge financial support of this work by the Austrian Research Promotion Agency (FFG) under Project numbers 835790 (“SiLithium”), 858298 (“DianaBatt”) and 879613 (“OPERION”).
en
dc.language.iso
en
-
dc.subject
fast gas chromatography
en
dc.subject
chromatographic theory
en
dc.subject
vacuum outlet (lo pressure)-GC
en
dc.subject
multiplexing-GC
en
dc.subject
thermal gradient GC
en
dc.title
Revisiting the van Deemter Equation: Various Ways to Speed up Chromatography
en
dc.type
Presentation
en
dc.type
Vortrag
de
dc.contributor.affiliation
TU Wien, Austria
-
dc.contributor.affiliation
Austrian Institute of Technology, Austria
-
dc.type.category
Keynote Presentation
-
tuw.publication.invited
invited
-
tuw.researchTopic.id
M2
-
tuw.researchTopic.id
E2
-
tuw.researchTopic.name
Materials Characterization
-
tuw.researchTopic.name
Sustainable and Low Emission Mobility
-
tuw.researchTopic.value
30
-
tuw.researchTopic.value
70
-
tuw.publication.orgunit
E164-01-2 - Forschungsgruppe Oberflächen-, Spurenanalytik und Chemometrie
-
tuw.event.name
26th International Symposium on Separation Sciences (ISSS 2022)
en
tuw.event.startdate
28-06-2022
-
tuw.event.enddate
01-07-2022
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Ljubljana
-
tuw.event.country
SI
-
tuw.event.institution
Central European Group for Separation Sciences (CEGSS) & University of Ljubljana
-
tuw.event.presenter
Rosenberg, Egon Erwin
-
tuw.event.track
Single Track
-
wb.sciencebranch
Chemie
-
wb.sciencebranch.oefos
1040
-
wb.sciencebranch.value
100
-
item.fulltext
no Fulltext
-
item.openairecristype
http://purl.org/coar/resource_type/c_18cp
-
item.languageiso639-1
en
-
item.cerifentitytype
Publications
-
item.openairetype
conference paper not in proceedings
-
item.grantfulltext
none
-
crisitem.author.dept
E164-01-2 - Forschungsgruppe Oberflächen-, Spurenanalytik und Chemometrie
-
crisitem.author.dept
E164-01-2 - Forschungsgruppe Oberflächen-, Spurenanalytik und Chemometrie
-
crisitem.author.dept
E164 - Institut für Chemische Technologien und Analytik
-
crisitem.author.dept
E164-01-2 - Forschungsgruppe Oberflächen-, Spurenanalytik und Chemometrie
-
crisitem.author.dept
E164 - Institut für Chemische Technologien und Analytik
-
crisitem.author.dept
TU Wien
-
crisitem.author.dept
Austrian Institute of Technology, Austria
-
crisitem.author.parentorg
E164-01 - Forschungsbereich Imaging und Instrumentelle Analytische Chemie
-
crisitem.author.parentorg
E164-01 - Forschungsbereich Imaging und Instrumentelle Analytische Chemie
-
crisitem.author.parentorg
E150 - Fakultät für Technische Chemie
-
crisitem.author.parentorg
E164-01 - Forschungsbereich Imaging und Instrumentelle Analytische Chemie