<div class="csl-bib-body">
<div class="csl-entry">Brunnbauer, A., Berducci, L., Brandstätter, A., Lechner, M., Hasani, R., Rus, D., & Grosu, R. (2022). Latent Imagination Facilitates Zero-Shot Transfer in Autonomous Racing. In <i>2022 IEEE International Conference on Robotics and Automation (ICRA)</i> (pp. 7513–7520). https://doi.org/10.1109/ICRA46639.2022.9811650</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/154429
-
dc.description.abstract
World models learn behaviors in a latent imagination space to enhance the sample-efficiency of deep reinforcement learning (RL) algorithms. While learning world models for high-dimensional observations (e.g., pixel inputs) has become practicable on standard RL benchmarks and some games, their effectiveness in real-world robotics applications has not been explored. In this paper, we investigate how such agents generalize to real-world autonomous vehicle control tasks, where advanced model-free deep RL algorithms fail. In particular, we set up a series of time-lap tasks for an F1TENTH racing robot, equipped with a high-dimensional LiDAR sensor, on a set of test tracks with a gradual increase in their complexity. In this continuous-control setting, we show that model-based agents capable of learning in imagination substantially outperform model-free agents with respect to performance, sample efficiency, successful task completion, and generalization. Moreover, we show that the generalization ability of model-based agents strongly depends on the choice of their observation model. We provide extensive empirical evidence for the effectiveness of world models provided with long enough memory horizons in sim2real tasks.
en
dc.language.iso
en
-
dc.rights.uri
https://creativecommons.org/licenses/by-nc/4.0/
-
dc.subject
Reinforcement Learning
en
dc.subject
Robotics
en
dc.subject
Autonomous Driving
en
dc.subject
Machine Learning
en
dc.subject
Artificial Intelligence
en
dc.title
Latent Imagination Facilitates Zero-Shot Transfer in Autonomous Racing
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.rights.license
Creative Commons Namensnennung - Nicht kommerziell 4.0 International
de
dc.rights.license
Creative Commons Attribution - NonCommercial 4.0 International
en
dc.contributor.affiliation
Institute of Science and Technology Austria, Austria
-
dc.contributor.affiliation
Massachusetts Institute of Technology, United States of America (the)
-
dc.contributor.affiliation
Massachusetts Institute of Technology, United States of America (the)
-
dc.relation.isbn
978-1-7281-9681-7
-
dc.description.startpage
7513
-
dc.description.endpage
7520
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
2022 IEEE International Conference on Robotics and Automation (ICRA)
-
tuw.researchTopic.id
C4
-
tuw.researchTopic.id
C6
-
tuw.researchTopic.id
I3
-
tuw.researchTopic.name
Mathematical and Algorithmic Foundations
-
tuw.researchTopic.name
Modeling and Simulation
-
tuw.researchTopic.name
Automation and Robotics
-
tuw.researchTopic.value
10
-
tuw.researchTopic.value
30
-
tuw.researchTopic.value
60
-
tuw.publication.orgunit
E191-01 - Forschungsbereich Cyber-Physical Systems
-
tuw.publisher.doi
10.1109/ICRA46639.2022.9811650
-
dc.description.numberOfPages
8
-
tuw.author.orcid
0000-0002-3497-6007
-
tuw.author.orcid
0000-0003-2820-4446
-
tuw.author.orcid
0000-0001-5473-3566
-
dc.rights.identifier
CC BY-NC 4.0
de
dc.rights.identifier
CC BY-NC 4.0
en
tuw.event.name
2022 IEEE International Conference on Robotics and Automation (ICRA 2022)
en
tuw.event.startdate
23-05-2022
-
tuw.event.enddate
27-05-2022
-
tuw.event.online
Hybrid
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Philadelphia, USA
-
tuw.event.country
US
-
tuw.event.presenter
Brunnbauer, Axel
-
tuw.event.presenter
Berducci, Luigi
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Elektrotechnik, Elektronik, Informationstechnik
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
2020
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
50
-
wb.sciencebranch.value
40
-
wb.sciencebranch.value
10
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.languageiso639-1
en
-
item.fulltext
no Fulltext
-
item.grantfulltext
restricted
-
item.openairetype
conference paper
-
item.cerifentitytype
Publications
-
crisitem.author.dept
E191-01 - Forschungsbereich Cyber-Physical Systems
-
crisitem.author.dept
E191-01 - Forschungsbereich Cyber-Physical Systems
-
crisitem.author.dept
E191-01 - Forschungsbereich Cyber-Physical Systems
-
crisitem.author.dept
E191-01 - Forschungsbereich Cyber-Physical Systems
-
crisitem.author.dept
E191-01 - Forschungsbereich Cyber-Physical Systems
-
crisitem.author.dept
Massachusetts Institute of Technology
-
crisitem.author.dept
E191-01 - Forschungsbereich Cyber-Physical Systems