<div class="csl-bib-body">
<div class="csl-entry">Kalliauer, J., Kahl, G., Scheiner, S., & Hellmich, C. (2020). A new approach to the mechanics of DNA : Atoms-to-beam homogenization. <i>Journal of the Mechanics and Physics of Solids</i>, <i>143</i>, 1–19. https://doi.org/10.1016/j.jmps.2020.104040</div>
</div>
-
dc.identifier.issn
0022-5096
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/15478
-
dc.description.abstract
It is useful to describe the deformation characteristics of long biological macromolecules, such as deoxyribonucleic acid (DNA), by means of terms such as “bending”, “stretching”, or “twisting”. These terms are borrowed from classical beam theory, a traditional and widely known subfield of continuum mechanics, whereas the standard numerical modeling procedure for macromolecules, which is molecular dynamics, does not allow for explicit introduction of the aforementioned deformation modes. This somehow puts some limit to the mechanical understanding of biological macromolecules. As a remedy, we here propose an upscaling (or homogenization) approach, spanning a new conceptual bridge from molecular dynamics to beam theory. Firstly, we apply the principle of virtual power (PVP) to classical continuum beams subjected to stretching and twisting, as well as to atomic compounds represented as discrete systems of mass points in the framework of molecular dynamics. Equating virtual power densities associated with continuum and discrete representations provides homogenization rules from the atomic compounds to the continuum beam line elements. Secondly, the forces acting on the aforementioned mass points are derived from energy potentials associated with bond stretching, valence and torsion angle variations, as well as electrostatic and van der Waals interactions. Application of this strategy to a specific DNA sequence consisting of 20 base pairs reveals deformation-dependent conformational changes, as well as paradox phenomena such as “stretching due to overwinding”, in line with known experimental observations.
en
dc.language.iso
en
-
dc.publisher
PERGAMON-ELSEVIER SCIENCE LTD
-
dc.relation.ispartof
Journal of the Mechanics and Physics of Solids
-
dc.rights.uri
http://creativecommons.org/licenses/by-nc-nd/4.0/
-
dc.subject
linear elasticity
en
dc.subject
Beam
en
dc.subject
Energy methods
en
dc.subject
finite differences
en
dc.subject
Flexibility
en
dc.subject
Young's modulus
en
dc.subject
Stretching stiffness
en
dc.subject
Free energy
en
dc.title
A new approach to the mechanics of DNA : Atoms-to-beam homogenization
en
dc.type
Article
en
dc.type
Artikel
de
dc.rights.license
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
en
dc.rights.license
Creative Commons Namensnennung - Nicht kommerziell - Keine Bearbeitungen 4.0 International
de
dc.description.startpage
1
-
dc.description.endpage
19
-
dcterms.dateSubmitted
2020-04-02
-
dc.type.category
Original Research Article
-
tuw.container.volume
143
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
tuw.version
vor
-
tuw.researchinfrastructure
Vienna Scientific Cluster
-
dcterms.isPartOf.title
Journal of the Mechanics and Physics of Solids
-
tuw.publication.orgunit
E202-01 - Forschungsbereich Festigkeitslehre und Biomechanik
-
tuw.publisher.doi
10.1016/j.jmps.2020.104040
-
dc.date.onlinefirst
2020-06-04
-
dc.identifier.articleid
104040
-
dc.identifier.eissn
1873-4782
-
dc.identifier.libraryid
AC17203726
-
dc.description.numberOfPages
19
-
tuw.author.orcid
0000-0003-4178-4510
-
dc.rights.identifier
CC BY-NC-ND 4.0
en
dc.rights.identifier
CC BY-NC-ND 4.0
de
item.cerifentitytype
Publications
-
item.languageiso639-1
en
-
item.mimetype
application/pdf
-
item.fulltext
with Fulltext
-
item.openairetype
research article
-
item.openaccessfulltext
Open Access
-
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
item.grantfulltext
open
-
crisitem.author.dept
E202-01 - Forschungsbereich Festigkeitslehre und Biomechanik
-
crisitem.author.dept
E056-12 - Fachbereich ENROL DP
-
crisitem.author.dept
E202-01 - Forschungsbereich Festigkeitslehre und Biomechanik
-
crisitem.author.dept
E202 - Institut für Mechanik der Werkstoffe und Strukturen
-
crisitem.author.orcid
0000-0003-4178-4510
-
crisitem.author.parentorg
E202 - Institut für Mechanik der Werkstoffe und Strukturen
-
crisitem.author.parentorg
E056 - Doctoral School
-
crisitem.author.parentorg
E202 - Institut für Mechanik der Werkstoffe und Strukturen