<div class="csl-bib-body">
<div class="csl-entry">Matthes, D., Bukal, M., & Jüngel, A. (2013). A multidimensional nonlinear sixth-order quantum diffusion equation. <i>Annales de l’Institut Henri Poincaré C</i>, <i>30</i>(2), 337–365. https://doi.org/10.1016/j.anihpc.2012.08.003</div>
</div>
-
dc.identifier.issn
0294-1449
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/154851
-
dc.description.abstract
Siehe englisches Abstract.
de
dc.description.abstract
This paper is concerned with the analysis of a sixth-order nonlinear parabolic equation whose solutions describe the evolution of
the particle density in a quantum fluid.We prove the global-in-time existence of weak nonnegative solutions in two and three space
dimensions under periodic boundary conditions. Moreover, we show that these solutions are smooth and classical whenever the
particle density is strictly positive, and we prove the long-time convergence to the spatial homogeneous equilibrium at a universal
exponential rate. Our analysis strongly uses the Lyapunov property of the entropy functional.
en
dc.language.iso
en
-
dc.publisher
EUROPEAN MATHEMATICAL SOC-EMS
-
dc.relation.ispartof
Annales de l'Institut Henri Poincaré C
-
dc.subject
Applied Mathematics
-
dc.subject
Analysis
-
dc.subject
Mathematical Physics
-
dc.subject
Quantum diffusion model
-
dc.subject
sixth-order equations
-
dc.title
A multidimensional nonlinear sixth-order quantum diffusion equation
en
dc.type
Artikel
de
dc.type
Article
en
dc.contributor.affiliation
TU Wien, Österreich
-
dc.description.startpage
337
-
dc.description.endpage
365
-
dc.type.category
Original Research Article
-
tuw.container.volume
30
-
tuw.container.issue
2
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
tuw.researchTopic.id
C6
-
tuw.researchTopic.id
C4
-
tuw.researchTopic.name
Modelling and Simulation
-
tuw.researchTopic.name
Mathematical and Algorithmic Foundations
-
tuw.researchTopic.value
20
-
tuw.researchTopic.value
80
-
dcterms.isPartOf.title
Annales de l'Institut Henri Poincaré C
-
tuw.publication.orgunit
E101-01 - Forschungsbereich Analysis
-
tuw.publisher.doi
10.1016/j.anihpc.2012.08.003
-
dc.identifier.eissn
1873-1430
-
dc.description.numberOfPages
29
-
wb.sci
true
-
wb.sciencebranch
Mathematik, Informatik
-
wb.sciencebranch.oefos
11
-
wb.facultyfocus
Analysis und Scientific Computing
de
wb.facultyfocus
Analysis and Scientific Computing
en
wb.facultyfocus.faculty
E100
-
item.fulltext
no Fulltext
-
item.openairetype
Artikel
-
item.openairetype
Article
-
item.cerifentitytype
Publications
-
item.cerifentitytype
Publications
-
item.grantfulltext
none
-
item.openairecristype
http://purl.org/coar/resource_type/c_18cf
-
item.openairecristype
http://purl.org/coar/resource_type/c_18cf
-
item.languageiso639-1
en
-
crisitem.author.dept
E101 - Institut für Analysis und Scientific Computing
-
crisitem.author.dept
TU Wien, Österreich
-
crisitem.author.dept
E101-01 - Forschungsbereich Analysis
-
crisitem.author.parentorg
E100 - Fakultät für Mathematik und Geoinformation
-
crisitem.author.parentorg
E101 - Institut für Analysis und Scientific Computing