Notice
This item was automatically migrated from a legacy system. It's data has not been checked and might not meet the quality criteria of the present system.
DC Field
Value
Language
dc.contributor.author
Dontchev, A. L.
-
dc.contributor.author
Krastanov, M. I.
-
dc.contributor.author
Rockafellar, R. T.
-
dc.contributor.author
Veliov, V. M.
-
dc.date.accessioned
2023-02-24T07:36:25Z
-
dc.date.available
2023-02-24T07:36:25Z
-
dc.date.issued
2013
-
dc.identifier.citation
<div class="csl-bib-body">
<div class="csl-entry">Dontchev, A. L., Krastanov, M. I., Rockafellar, R. T., & Veliov, V. M. (2013). An Euler-Newton Continuation Method for Tracking Solution Trajectories of Parametric Variational Inequalities. <i>SIAM Journal on Control and Optimization</i>, <i>51</i>(3), 1823–1840. https://doi.org/10.1137/120876915</div>
</div>
-
dc.identifier.issn
0363-0129
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/154982
-
dc.description.abstract
A finite-dimensional variational inequality parameterized by $t\in [0,1]$ is studied under the assumption that each point of the graph of its generally set-valued solution mapping is a point of strongly regularity. It is shown that there are finitely many Lipschitz continuous functions on $[0,1]$ whose graphs do not intersect each other such that for each value of the parameter the set of values of the solution mapping is the union of the values of these functions. Moreover, the property of strong regularity is uniform with respect to the parameter along any such function graph. An Euler--Newton continuation method for tracking a solution trajectory is introduced and demonstrated to have $l^\infty$ accuracy of order $O(h^4)$, thus generalizing a known error estimate for equations. Two examples of tracking economic equilibrium parametrically illustrate the theoretical results.
en
dc.publisher
SIAM PUBLICATIONS
-
dc.relation.ispartof
SIAM Journal on Control and Optimization
-
dc.subject
Applied Mathematics
-
dc.subject
error estimate
-
dc.subject
variational inequality
-
dc.subject
Control and Optimization
-
dc.subject
strong regularity
-
dc.subject
Euler--Newton continuation
-
dc.subject
economic equilibrium
-
dc.title
An Euler-Newton Continuation Method for Tracking Solution Trajectories of Parametric Variational Inequalities
-
dc.type
Artikel
de
dc.type
Article
en
dc.description.startpage
1823
-
dc.description.endpage
1840
-
dc.type.category
Original Research Article
-
tuw.container.volume
51
-
tuw.container.issue
3
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
tuw.researchTopic.id
C6
-
tuw.researchTopic.id
C4
-
tuw.researchTopic.name
Modelling and Simulation
-
tuw.researchTopic.name
Mathematical and Algorithmic Foundations
-
tuw.researchTopic.value
50
-
tuw.researchTopic.value
50
-
dcterms.isPartOf.title
SIAM Journal on Control and Optimization
-
tuw.publication.orgunit
E105-04 - Forschungsbereich Variationsrechnung, Dynamische Systeme und Operations Research
-
tuw.publisher.doi
10.1137/120876915
-
dc.identifier.eissn
1095-7138
-
dc.description.numberOfPages
18
-
wb.sci
true
-
wb.sciencebranch
Mathematik, Informatik
-
wb.sciencebranch.oefos
11
-
wb.facultyfocus
Wirtschaftsmathematik und Stochastik
de
wb.facultyfocus
Mathematical Methods in Economics and Stochastics
en
wb.facultyfocus.faculty
E100
-
item.grantfulltext
none
-
item.fulltext
no Fulltext
-
item.openairetype
research article
-
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
item.cerifentitytype
Publications
-
crisitem.author.dept
E105 - Institut für Stochastik und Wirtschaftsmathematik
-
crisitem.author.dept
E105 - Institut für Stochastik und Wirtschaftsmathematik