<div class="csl-bib-body">
<div class="csl-entry">Baňas, Ľ., Page, M., Praetorius, D., & Rochat, J. (2014). A decoupled and unconditionally convergent linear FEM integrator for the Landau–Lifshitz–Gilbert equation with magnetostriction. <i>IMA Journal of Numerical Analysis</i>, <i>34</i>(4), 1361–1385. https://doi.org/10.1093/imanum/drt050</div>
</div>
-
dc.identifier.issn
0272-4979
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/155237
-
dc.description.abstract
To describe and simulate dynamic micromagnetic phenomena, we consider a coupled system
of the nonlinear Landau-Lifshitz-Gilbert equation and the conservation of momentum
equation. This coupling allows to include magnetostrictive effects into the simulations.
Existence of weak solutions has recently been shown in [CARBOU ET AL., Math. Meth. Appl.
Sci. (2011)]. In our contribution, we give an alternate proof which additionally provides an
effective numerical integrator. The latter is based on linear finite elements in space and a
linear-implicit Euler time-stepping. Despite the nonlinearity, only two linear systems have to
be solved per timestep, and the integrator fully decouples both equations. Finally, we prove
unconditional convergence-at least of a subsequence-towards, and hence existence of, a
weak solution of the coupled system, as timestep size and spatial mesh-size tend to zero. We
conclude the work with numerical experiments which study the discrete blow-up of the LLG
equation as well as the influence of the magnetostrictive term on the discrete blow-up.
en
dc.language.iso
en
-
dc.publisher
OXFORD UNIV PRESS
-
dc.relation.ispartof
IMA Journal of Numerical Analysis
-
dc.subject
Applied Mathematics
-
dc.subject
General Mathematics
-
dc.subject
Computational Mathematics
-
dc.subject
magnetostriction
-
dc.subject
LLG
-
dc.subject
linear scheme
-
dc.subject
ferromagnetism
-
dc.subject
convergence.
-
dc.title
A decoupled and unconditionally convergent linear FEM integrator for the Landau–Lifshitz–Gilbert equation with magnetostriction
en
dc.type
Artikel
de
dc.type
Article
en
dc.description.startpage
1361
-
dc.description.endpage
1385
-
dc.type.category
Original Research Article
-
tuw.container.volume
34
-
tuw.container.issue
4
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
tuw.researchTopic.id
C4
-
tuw.researchTopic.id
C1
-
tuw.researchTopic.name
Mathematical and Algorithmic Foundations
-
tuw.researchTopic.name
Computational Materials Science
-
tuw.researchTopic.value
90
-
tuw.researchTopic.value
10
-
dcterms.isPartOf.title
IMA Journal of Numerical Analysis
-
tuw.publication.orgunit
E101-02 - Forschungsbereich Numerik
-
tuw.publisher.doi
10.1093/imanum/drt050
-
dc.identifier.eissn
1464-3642
-
dc.description.numberOfPages
25
-
wb.sci
true
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1010
-
wb.facultyfocus
Analysis und Scientific Computing
de
wb.facultyfocus
Analysis and Scientific Computing
en
wb.facultyfocus.faculty
E100
-
item.languageiso639-1
en
-
item.openairetype
research article
-
item.grantfulltext
none
-
item.fulltext
no Fulltext
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
crisitem.author.dept
E101 - Institut für Analysis und Scientific Computing
-
crisitem.author.dept
E101 - Institut für Analysis und Scientific Computing